具有记忆信道后验匹配方案的零速率可达性

Jui Wu, A. Anastasopoulos
{"title":"具有记忆信道后验匹配方案的零速率可达性","authors":"Jui Wu, A. Anastasopoulos","doi":"10.1109/ISIT.2016.7541726","DOIUrl":null,"url":null,"abstract":"Shayevitz and Feder proposed a capacity-achieving sequential transmission scheme for memoryless channels called posterior matching (PM). The proof of capacity achievability of PM is involved and requires invertibility of the PM kernel (also referred to as one-step invertibility). Recent work by the same authors provided a simpler proof but still requires PM kernel invertibility.","PeriodicalId":198767,"journal":{"name":"2016 IEEE International Symposium on Information Theory (ISIT)","volume":"59 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Zero-rate achievability of posterior matching schemes for channels with memory\",\"authors\":\"Jui Wu, A. Anastasopoulos\",\"doi\":\"10.1109/ISIT.2016.7541726\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Shayevitz and Feder proposed a capacity-achieving sequential transmission scheme for memoryless channels called posterior matching (PM). The proof of capacity achievability of PM is involved and requires invertibility of the PM kernel (also referred to as one-step invertibility). Recent work by the same authors provided a simpler proof but still requires PM kernel invertibility.\",\"PeriodicalId\":198767,\"journal\":{\"name\":\"2016 IEEE International Symposium on Information Theory (ISIT)\",\"volume\":\"59 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-07-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 IEEE International Symposium on Information Theory (ISIT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISIT.2016.7541726\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE International Symposium on Information Theory (ISIT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISIT.2016.7541726","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

Shayevitz和Feder提出了一种用于无记忆信道的容量实现顺序传输方案,称为后验匹配(PM)。涉及到PM的容量可实现性的证明,要求PM核的可逆性(也称为一步可逆性)。同一作者最近的工作提供了一个更简单的证明,但仍然需要PM内核可逆性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Zero-rate achievability of posterior matching schemes for channels with memory
Shayevitz and Feder proposed a capacity-achieving sequential transmission scheme for memoryless channels called posterior matching (PM). The proof of capacity achievability of PM is involved and requires invertibility of the PM kernel (also referred to as one-step invertibility). Recent work by the same authors provided a simpler proof but still requires PM kernel invertibility.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信