{"title":"数据驱动的户外广告牌定向广告推荐系统","authors":"Liang Wang, Zhiwen Yu, Bin Guo, Dingqi Yang, Lianbo Ma, Zhidan Liu, Fei Xiong","doi":"10.1145/3495159","DOIUrl":null,"url":null,"abstract":"In this article, we propose and study a novel data-driven framework for Targeted Outdoor Advertising Recommendation (TOAR) with a special consideration of user profiles and advertisement topics. Given an advertisement query and a set of outdoor billboards with different spatial locations and rental prices, our goal is to find a subset of billboards, such that the total targeted influence is maximum under a limited budget constraint. To achieve this goal, we are facing two challenges: (1) it is difficult to estimate targeted advertising influence in physical world; (2) due to NP hardness, many common search techniques fail to provide a satisfied solution with an acceptable time, especially for large-scale problem settings. Taking into account the exposure strength, advertisement matching degree, and advertising repetition effect, we first build a targeted influence model that can characterize that the advertising influence spreads along with users mobility. Subsequently, based on a divide-and-conquer strategy, we develop two effective approaches, i.e., a master–slave-based sequential optimization method, TOAR-MSS, and a cooperative co-evolution-based optimization method, TOAR-CC, to solve our studied problem. Extensive experiments on two real-world datasets clearly validate the effectiveness and efficiency of our proposed approaches.","PeriodicalId":123526,"journal":{"name":"ACM Transactions on Intelligent Systems and Technology (TIST)","volume":"43 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-01-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Data-driven Targeted Advertising Recommendation System for Outdoor Billboard\",\"authors\":\"Liang Wang, Zhiwen Yu, Bin Guo, Dingqi Yang, Lianbo Ma, Zhidan Liu, Fei Xiong\",\"doi\":\"10.1145/3495159\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this article, we propose and study a novel data-driven framework for Targeted Outdoor Advertising Recommendation (TOAR) with a special consideration of user profiles and advertisement topics. Given an advertisement query and a set of outdoor billboards with different spatial locations and rental prices, our goal is to find a subset of billboards, such that the total targeted influence is maximum under a limited budget constraint. To achieve this goal, we are facing two challenges: (1) it is difficult to estimate targeted advertising influence in physical world; (2) due to NP hardness, many common search techniques fail to provide a satisfied solution with an acceptable time, especially for large-scale problem settings. Taking into account the exposure strength, advertisement matching degree, and advertising repetition effect, we first build a targeted influence model that can characterize that the advertising influence spreads along with users mobility. Subsequently, based on a divide-and-conquer strategy, we develop two effective approaches, i.e., a master–slave-based sequential optimization method, TOAR-MSS, and a cooperative co-evolution-based optimization method, TOAR-CC, to solve our studied problem. Extensive experiments on two real-world datasets clearly validate the effectiveness and efficiency of our proposed approaches.\",\"PeriodicalId\":123526,\"journal\":{\"name\":\"ACM Transactions on Intelligent Systems and Technology (TIST)\",\"volume\":\"43 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-01-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM Transactions on Intelligent Systems and Technology (TIST)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3495159\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Intelligent Systems and Technology (TIST)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3495159","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Data-driven Targeted Advertising Recommendation System for Outdoor Billboard
In this article, we propose and study a novel data-driven framework for Targeted Outdoor Advertising Recommendation (TOAR) with a special consideration of user profiles and advertisement topics. Given an advertisement query and a set of outdoor billboards with different spatial locations and rental prices, our goal is to find a subset of billboards, such that the total targeted influence is maximum under a limited budget constraint. To achieve this goal, we are facing two challenges: (1) it is difficult to estimate targeted advertising influence in physical world; (2) due to NP hardness, many common search techniques fail to provide a satisfied solution with an acceptable time, especially for large-scale problem settings. Taking into account the exposure strength, advertisement matching degree, and advertising repetition effect, we first build a targeted influence model that can characterize that the advertising influence spreads along with users mobility. Subsequently, based on a divide-and-conquer strategy, we develop two effective approaches, i.e., a master–slave-based sequential optimization method, TOAR-MSS, and a cooperative co-evolution-based optimization method, TOAR-CC, to solve our studied problem. Extensive experiments on two real-world datasets clearly validate the effectiveness and efficiency of our proposed approaches.