Fangjie Yu, Xinlei Hu, Chunyong Ma, Yang Zhao, Yunfei Liu, Fan Yang, Ge Chen
{"title":"MDIS布衣系统:虚拟现实技术用于消防员培训","authors":"Fangjie Yu, Xinlei Hu, Chunyong Ma, Yang Zhao, Yunfei Liu, Fan Yang, Ge Chen","doi":"10.1145/3013971.3013977","DOIUrl":null,"url":null,"abstract":"Fire accidents can cause numerous casualties and heavy property losses, especially, in petrochemical industry, such accidents are likely to cause secondary disasters. However, common fire drill training would cause loss of resources and pollution. We designed a multi-dimensional interactive somatosensory (MDIS) cloth system based on virtual reality technology to simulate fire accidents in petrochemical industry. It provides a vivid visual and somatosensory experience. A thermal radiation model is built in a virtual environment, and it could predict the destruction radius of a fire. The participant position changes are got from Kinect, and shown in virtual environment synchronously. The somatosensory cloth, which could both heat and refrigerant, provides temperature feedback based on thermal radiation results and actual distance. In this paper, we demonstrate the details of the design, and then verified its basic function. Heating deviation from model target is lower than 3.3 °C and refrigerant efficiency is approximately two times faster than heating efficiency.","PeriodicalId":269563,"journal":{"name":"Proceedings of the 15th ACM SIGGRAPH Conference on Virtual-Reality Continuum and Its Applications in Industry - Volume 1","volume":"80 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"MDIS cloth system: virtual reality technology for firefighter training\",\"authors\":\"Fangjie Yu, Xinlei Hu, Chunyong Ma, Yang Zhao, Yunfei Liu, Fan Yang, Ge Chen\",\"doi\":\"10.1145/3013971.3013977\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Fire accidents can cause numerous casualties and heavy property losses, especially, in petrochemical industry, such accidents are likely to cause secondary disasters. However, common fire drill training would cause loss of resources and pollution. We designed a multi-dimensional interactive somatosensory (MDIS) cloth system based on virtual reality technology to simulate fire accidents in petrochemical industry. It provides a vivid visual and somatosensory experience. A thermal radiation model is built in a virtual environment, and it could predict the destruction radius of a fire. The participant position changes are got from Kinect, and shown in virtual environment synchronously. The somatosensory cloth, which could both heat and refrigerant, provides temperature feedback based on thermal radiation results and actual distance. In this paper, we demonstrate the details of the design, and then verified its basic function. Heating deviation from model target is lower than 3.3 °C and refrigerant efficiency is approximately two times faster than heating efficiency.\",\"PeriodicalId\":269563,\"journal\":{\"name\":\"Proceedings of the 15th ACM SIGGRAPH Conference on Virtual-Reality Continuum and Its Applications in Industry - Volume 1\",\"volume\":\"80 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-12-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 15th ACM SIGGRAPH Conference on Virtual-Reality Continuum and Its Applications in Industry - Volume 1\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3013971.3013977\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 15th ACM SIGGRAPH Conference on Virtual-Reality Continuum and Its Applications in Industry - Volume 1","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3013971.3013977","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
MDIS cloth system: virtual reality technology for firefighter training
Fire accidents can cause numerous casualties and heavy property losses, especially, in petrochemical industry, such accidents are likely to cause secondary disasters. However, common fire drill training would cause loss of resources and pollution. We designed a multi-dimensional interactive somatosensory (MDIS) cloth system based on virtual reality technology to simulate fire accidents in petrochemical industry. It provides a vivid visual and somatosensory experience. A thermal radiation model is built in a virtual environment, and it could predict the destruction radius of a fire. The participant position changes are got from Kinect, and shown in virtual environment synchronously. The somatosensory cloth, which could both heat and refrigerant, provides temperature feedback based on thermal radiation results and actual distance. In this paper, we demonstrate the details of the design, and then verified its basic function. Heating deviation from model target is lower than 3.3 °C and refrigerant efficiency is approximately two times faster than heating efficiency.