{"title":"基于子空间和假设的协同语音合成基本单元有效分割","authors":"R. Muralishankar, R. Srikanth, A. Ramakrishnan","doi":"10.1109/TENCON.2003.1273351","DOIUrl":null,"url":null,"abstract":"In this paper, we present two new methods for vowel-consonant segmentation of a co-articulated basic-units employed in our Thirukkural Tamil text-to-speech synthesis system (G. L. Jayavardhana Rama et al, IEEE workshop on Speech Synthesis, 2002). The basic-units considered in this are CV, VC, VCV, VCCV and VCCC, where C stands for a consonant and V for any vowel. In the first method, we use a subspace-based approach for vowel-consonant segmentation. It uses oriented principal component analysis (OPCA) where the test feature vectors are projected on to the V and C subspaces. The crossover of the norm-contours obtained by projecting the test basic-unit onto the V and C subspaces give the segmentation points which in turn helps in identifying the V and C durations of a test basic-unit. In the second method, we use probabilistic principal component analysis (PPCA) to get probability models for V and C. We then use the Neymen-Pearson (NP) test to segment the basic-unit into V and C. Finally, we show that the hypothesis testing turns out to be an energy detector for V-C segmentation which is similar to the first method.","PeriodicalId":405847,"journal":{"name":"TENCON 2003. Conference on Convergent Technologies for Asia-Pacific Region","volume":"40 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2003-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Subspace and hypothesis based effective segmentation of co-articulated basic-units for concatenative speech synthesis\",\"authors\":\"R. Muralishankar, R. Srikanth, A. Ramakrishnan\",\"doi\":\"10.1109/TENCON.2003.1273351\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we present two new methods for vowel-consonant segmentation of a co-articulated basic-units employed in our Thirukkural Tamil text-to-speech synthesis system (G. L. Jayavardhana Rama et al, IEEE workshop on Speech Synthesis, 2002). The basic-units considered in this are CV, VC, VCV, VCCV and VCCC, where C stands for a consonant and V for any vowel. In the first method, we use a subspace-based approach for vowel-consonant segmentation. It uses oriented principal component analysis (OPCA) where the test feature vectors are projected on to the V and C subspaces. The crossover of the norm-contours obtained by projecting the test basic-unit onto the V and C subspaces give the segmentation points which in turn helps in identifying the V and C durations of a test basic-unit. In the second method, we use probabilistic principal component analysis (PPCA) to get probability models for V and C. We then use the Neymen-Pearson (NP) test to segment the basic-unit into V and C. Finally, we show that the hypothesis testing turns out to be an energy detector for V-C segmentation which is similar to the first method.\",\"PeriodicalId\":405847,\"journal\":{\"name\":\"TENCON 2003. Conference on Convergent Technologies for Asia-Pacific Region\",\"volume\":\"40 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2003-10-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"TENCON 2003. Conference on Convergent Technologies for Asia-Pacific Region\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/TENCON.2003.1273351\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"TENCON 2003. Conference on Convergent Technologies for Asia-Pacific Region","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TENCON.2003.1273351","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Subspace and hypothesis based effective segmentation of co-articulated basic-units for concatenative speech synthesis
In this paper, we present two new methods for vowel-consonant segmentation of a co-articulated basic-units employed in our Thirukkural Tamil text-to-speech synthesis system (G. L. Jayavardhana Rama et al, IEEE workshop on Speech Synthesis, 2002). The basic-units considered in this are CV, VC, VCV, VCCV and VCCC, where C stands for a consonant and V for any vowel. In the first method, we use a subspace-based approach for vowel-consonant segmentation. It uses oriented principal component analysis (OPCA) where the test feature vectors are projected on to the V and C subspaces. The crossover of the norm-contours obtained by projecting the test basic-unit onto the V and C subspaces give the segmentation points which in turn helps in identifying the V and C durations of a test basic-unit. In the second method, we use probabilistic principal component analysis (PPCA) to get probability models for V and C. We then use the Neymen-Pearson (NP) test to segment the basic-unit into V and C. Finally, we show that the hypothesis testing turns out to be an energy detector for V-C segmentation which is similar to the first method.