学习一种基于虚拟世界多视图部件的行人检测模型

Jiaolong Xu, David Vázquez, Antonio M. López, J. Marín, D. Ponsa
{"title":"学习一种基于虚拟世界多视图部件的行人检测模型","authors":"Jiaolong Xu, David Vázquez, Antonio M. López, J. Marín, D. Ponsa","doi":"10.1109/IVS.2013.6629512","DOIUrl":null,"url":null,"abstract":"State-of-the-art deformable part-based models based on latent SVM have shown excellent results on human detection. In this paper, we propose to train a multiview deformable part-based model with automatically generated part examples from virtual-world data. The method is efficient as: (i) the part detectors are trained with precisely extracted virtual examples, thus no latent learning is needed, (ii) the multiview pedestrian detector enhances the performance of the pedestrian root model, (iii) a top-down approach is used for part detection which reduces the searching space. We evaluate our model on Daimler and Karlsruhe Pedestrian Benchmarks with publicly available Caltech pedestrian detection evaluation framework and the result outperforms the state-of-the-art latent SVM V4.0, on both average miss rate and speed (our detector is ten times faster).","PeriodicalId":251198,"journal":{"name":"2013 IEEE Intelligent Vehicles Symposium (IV)","volume":"91 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Learning a multiview part-based model in virtual world for pedestrian detection\",\"authors\":\"Jiaolong Xu, David Vázquez, Antonio M. López, J. Marín, D. Ponsa\",\"doi\":\"10.1109/IVS.2013.6629512\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"State-of-the-art deformable part-based models based on latent SVM have shown excellent results on human detection. In this paper, we propose to train a multiview deformable part-based model with automatically generated part examples from virtual-world data. The method is efficient as: (i) the part detectors are trained with precisely extracted virtual examples, thus no latent learning is needed, (ii) the multiview pedestrian detector enhances the performance of the pedestrian root model, (iii) a top-down approach is used for part detection which reduces the searching space. We evaluate our model on Daimler and Karlsruhe Pedestrian Benchmarks with publicly available Caltech pedestrian detection evaluation framework and the result outperforms the state-of-the-art latent SVM V4.0, on both average miss rate and speed (our detector is ten times faster).\",\"PeriodicalId\":251198,\"journal\":{\"name\":\"2013 IEEE Intelligent Vehicles Symposium (IV)\",\"volume\":\"91 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-10-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 IEEE Intelligent Vehicles Symposium (IV)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IVS.2013.6629512\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE Intelligent Vehicles Symposium (IV)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IVS.2013.6629512","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

基于潜在支持向量机的可变形零件模型在人体检测方面显示出优异的效果。在本文中,我们提出了一种基于虚拟世界数据自动生成零件示例的多视图可变形零件模型。该方法的有效性在于:(1)部分检测器使用精确提取的虚拟样本进行训练,因此不需要潜在学习;(2)多视图行人检测器增强了行人根模型的性能;(3)采用自顶向下的方法进行部分检测,减少了搜索空间。我们用公开可用的加州理工学院行人检测评估框架在戴姆勒和卡尔斯鲁厄行人基准上评估了我们的模型,结果在平均缺失率和速度上都优于最先进的潜在支持向量机V4.0(我们的检测器快了十倍)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Learning a multiview part-based model in virtual world for pedestrian detection
State-of-the-art deformable part-based models based on latent SVM have shown excellent results on human detection. In this paper, we propose to train a multiview deformable part-based model with automatically generated part examples from virtual-world data. The method is efficient as: (i) the part detectors are trained with precisely extracted virtual examples, thus no latent learning is needed, (ii) the multiview pedestrian detector enhances the performance of the pedestrian root model, (iii) a top-down approach is used for part detection which reduces the searching space. We evaluate our model on Daimler and Karlsruhe Pedestrian Benchmarks with publicly available Caltech pedestrian detection evaluation framework and the result outperforms the state-of-the-art latent SVM V4.0, on both average miss rate and speed (our detector is ten times faster).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信