贴现累积保证金惩罚:具有列表明智损失和成对明智保证金的排名学习

C. Renjifo, C. Carmen
{"title":"贴现累积保证金惩罚:具有列表明智损失和成对明智保证金的排名学习","authors":"C. Renjifo, C. Carmen","doi":"10.1109/MLSP.2012.6349807","DOIUrl":null,"url":null,"abstract":"In recent years, the fields of rank-learning and information retrieval have received substantial attention. Algorithms developed within these domains have shown promising results in a variety of problem spaces, especially in document retrieval and web search. In this paper, a new rank-learning algorithm is proposed that combines list-wise loss measurements with pair-wise margins. The list-wise loss term is inspired by the Normalized Discounted Cumulative Gain (NDCG) metric, and the resulting objective function is solvable with gradient-free optimization techniques. Experiments using the LETOR 3.0 and 4.0 collections demonstrate that the ranking performance achieved by an algorithm using this loss measure is competitive with reported baselines.","PeriodicalId":262601,"journal":{"name":"2012 IEEE International Workshop on Machine Learning for Signal Processing","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":"{\"title\":\"The discounted cumulative margin penalty: Rank-learning with a list-wise loss and pair-wise margins\",\"authors\":\"C. Renjifo, C. Carmen\",\"doi\":\"10.1109/MLSP.2012.6349807\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In recent years, the fields of rank-learning and information retrieval have received substantial attention. Algorithms developed within these domains have shown promising results in a variety of problem spaces, especially in document retrieval and web search. In this paper, a new rank-learning algorithm is proposed that combines list-wise loss measurements with pair-wise margins. The list-wise loss term is inspired by the Normalized Discounted Cumulative Gain (NDCG) metric, and the resulting objective function is solvable with gradient-free optimization techniques. Experiments using the LETOR 3.0 and 4.0 collections demonstrate that the ranking performance achieved by an algorithm using this loss measure is competitive with reported baselines.\",\"PeriodicalId\":262601,\"journal\":{\"name\":\"2012 IEEE International Workshop on Machine Learning for Signal Processing\",\"volume\":\"9 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-11-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 IEEE International Workshop on Machine Learning for Signal Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MLSP.2012.6349807\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 IEEE International Workshop on Machine Learning for Signal Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MLSP.2012.6349807","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

摘要

近年来,排名学习和信息检索领域受到了广泛的关注。在这些领域中开发的算法在各种问题空间中显示出有希望的结果,特别是在文档检索和web搜索中。本文提出了一种新的秩学习算法,该算法结合了表向损失度量和对向边缘。单表损失项的灵感来自于归一化贴现累积增益(NDCG)度量,得到的目标函数可通过无梯度优化技术求解。使用LETOR 3.0和4.0集合的实验表明,使用这种损失度量的算法获得的排名性能与报告的基线具有竞争力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The discounted cumulative margin penalty: Rank-learning with a list-wise loss and pair-wise margins
In recent years, the fields of rank-learning and information retrieval have received substantial attention. Algorithms developed within these domains have shown promising results in a variety of problem spaces, especially in document retrieval and web search. In this paper, a new rank-learning algorithm is proposed that combines list-wise loss measurements with pair-wise margins. The list-wise loss term is inspired by the Normalized Discounted Cumulative Gain (NDCG) metric, and the resulting objective function is solvable with gradient-free optimization techniques. Experiments using the LETOR 3.0 and 4.0 collections demonstrate that the ranking performance achieved by an algorithm using this loss measure is competitive with reported baselines.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信