基于时间序列分析和改进遗传算法的多目标水资源优化策略

Changqing Lai, Zheng Xu, Yuning Jiang
{"title":"基于时间序列分析和改进遗传算法的多目标水资源优化策略","authors":"Changqing Lai, Zheng Xu, Yuning Jiang","doi":"10.12733/JICS20105730","DOIUrl":null,"url":null,"abstract":"Time series analysis and genetic algorithm have a good application in many flelds. In present paper, we utilized graph theory, and established a multi-objective optimal water distribution model according to current situation in China. Then, we utilized time series analysis to predict water supply and demand situation, and put forward an improved genetic algorithm solution for optimal water resources strategy. Furthermore, sensitivity and efiectivity of the improved genetic algorithm is flt to resolve the model. This method can be extended to other various resources-distribution flelds.","PeriodicalId":213716,"journal":{"name":"The Journal of Information and Computational Science","volume":"38 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A Multi-objective Optimal Water Strategy Using Time Series Analysis and Improved Genetic Algorithm\",\"authors\":\"Changqing Lai, Zheng Xu, Yuning Jiang\",\"doi\":\"10.12733/JICS20105730\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Time series analysis and genetic algorithm have a good application in many flelds. In present paper, we utilized graph theory, and established a multi-objective optimal water distribution model according to current situation in China. Then, we utilized time series analysis to predict water supply and demand situation, and put forward an improved genetic algorithm solution for optimal water resources strategy. Furthermore, sensitivity and efiectivity of the improved genetic algorithm is flt to resolve the model. This method can be extended to other various resources-distribution flelds.\",\"PeriodicalId\":213716,\"journal\":{\"name\":\"The Journal of Information and Computational Science\",\"volume\":\"38 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-04-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Journal of Information and Computational Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.12733/JICS20105730\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Information and Computational Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.12733/JICS20105730","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

时间序列分析和遗传算法在许多领域都有很好的应用。本文运用图论理论,根据中国的实际情况,建立了一个多目标最优配水模型。然后,利用时间序列分析方法对水资源供需状况进行预测,并提出一种改进的遗传算法求解最优水资源策略。进一步证明了改进遗传算法求解模型的灵敏度和有效性。该方法可推广到其他各种资源分布领域。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Multi-objective Optimal Water Strategy Using Time Series Analysis and Improved Genetic Algorithm
Time series analysis and genetic algorithm have a good application in many flelds. In present paper, we utilized graph theory, and established a multi-objective optimal water distribution model according to current situation in China. Then, we utilized time series analysis to predict water supply and demand situation, and put forward an improved genetic algorithm solution for optimal water resources strategy. Furthermore, sensitivity and efiectivity of the improved genetic algorithm is flt to resolve the model. This method can be extended to other various resources-distribution flelds.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信