动态三维线性规划

D. Eppstein
{"title":"动态三维线性规划","authors":"D. Eppstein","doi":"10.1109/SFCS.1991.185410","DOIUrl":null,"url":null,"abstract":"Linear programming optimizations on the intersection of k polyhedra in R/sup 3/, represented by their outer recursive decompositions, are performed in expected time O(k log k log n+ square root k log k log/sup 3/ n). This result is used to derive efficient algorithms for dynamic linear programming problems ill which constraints are inserted and deleted, and queries must optimize specified objective functions. As an application, an improved solution to the planar 2-center problem, is described.<<ETX>>","PeriodicalId":320781,"journal":{"name":"[1991] Proceedings 32nd Annual Symposium of Foundations of Computer Science","volume":"27 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1991-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"69","resultStr":"{\"title\":\"Dynamic three-dimensional linear programming\",\"authors\":\"D. Eppstein\",\"doi\":\"10.1109/SFCS.1991.185410\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Linear programming optimizations on the intersection of k polyhedra in R/sup 3/, represented by their outer recursive decompositions, are performed in expected time O(k log k log n+ square root k log k log/sup 3/ n). This result is used to derive efficient algorithms for dynamic linear programming problems ill which constraints are inserted and deleted, and queries must optimize specified objective functions. As an application, an improved solution to the planar 2-center problem, is described.<<ETX>>\",\"PeriodicalId\":320781,\"journal\":{\"name\":\"[1991] Proceedings 32nd Annual Symposium of Foundations of Computer Science\",\"volume\":\"27 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1991-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"69\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"[1991] Proceedings 32nd Annual Symposium of Foundations of Computer Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SFCS.1991.185410\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"[1991] Proceedings 32nd Annual Symposium of Foundations of Computer Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SFCS.1991.185410","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 69

摘要

在R/sup 3/中k个多面体的交点上,用它们的外部递归分解表示线性规划优化,在期望时间O(k log k log n+平方根k log k log/sup 3/ n)内完成了线性规划优化。这一结果用于导出动态线性规划问题的有效算法,这些问题需要插入和删除约束,查询必须优化指定的目标函数。作为应用,本文描述了平面二中心问题的一种改进解
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Dynamic three-dimensional linear programming
Linear programming optimizations on the intersection of k polyhedra in R/sup 3/, represented by their outer recursive decompositions, are performed in expected time O(k log k log n+ square root k log k log/sup 3/ n). This result is used to derive efficient algorithms for dynamic linear programming problems ill which constraints are inserted and deleted, and queries must optimize specified objective functions. As an application, an improved solution to the planar 2-center problem, is described.<>
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信