{"title":"利用点特征匹配实现视频稳定","authors":"Nithin Kumar Brahamadevara, GAE Satish Kumar, Purna Goud Palusa, Dinesh Bandaru","doi":"10.1109/I2CT57861.2023.10126471","DOIUrl":null,"url":null,"abstract":"A technique for video stabilization that maintains the subject steady while also eliminating hand shaking. Our network topology is especially made to stabilize both the background and the foreground simultaneously while giving the user the opportunity to adjust the stabilization emphasis. We additionally offer a real-time frame-warping stiff moving least squares grid approximation. To explicitly infer the stiff moving least squares warping, which implicitly balances between global rigidity and local flexibility, a linear convolutional network is utilised. Our method is fully automated and requires no user preparation or input. The use of video stabilization is crucial in both amateur and professional filming. As a result, there are several mechanical, optical, and computational solutions. Stabilization may be used to capture handheld photos with lengthy exposure durations in still image photography as well.","PeriodicalId":150346,"journal":{"name":"2023 IEEE 8th International Conference for Convergence in Technology (I2CT)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-04-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Utilizing the Point Feature Matching for Video Stabilization\",\"authors\":\"Nithin Kumar Brahamadevara, GAE Satish Kumar, Purna Goud Palusa, Dinesh Bandaru\",\"doi\":\"10.1109/I2CT57861.2023.10126471\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A technique for video stabilization that maintains the subject steady while also eliminating hand shaking. Our network topology is especially made to stabilize both the background and the foreground simultaneously while giving the user the opportunity to adjust the stabilization emphasis. We additionally offer a real-time frame-warping stiff moving least squares grid approximation. To explicitly infer the stiff moving least squares warping, which implicitly balances between global rigidity and local flexibility, a linear convolutional network is utilised. Our method is fully automated and requires no user preparation or input. The use of video stabilization is crucial in both amateur and professional filming. As a result, there are several mechanical, optical, and computational solutions. Stabilization may be used to capture handheld photos with lengthy exposure durations in still image photography as well.\",\"PeriodicalId\":150346,\"journal\":{\"name\":\"2023 IEEE 8th International Conference for Convergence in Technology (I2CT)\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-04-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 IEEE 8th International Conference for Convergence in Technology (I2CT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/I2CT57861.2023.10126471\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE 8th International Conference for Convergence in Technology (I2CT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/I2CT57861.2023.10126471","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Utilizing the Point Feature Matching for Video Stabilization
A technique for video stabilization that maintains the subject steady while also eliminating hand shaking. Our network topology is especially made to stabilize both the background and the foreground simultaneously while giving the user the opportunity to adjust the stabilization emphasis. We additionally offer a real-time frame-warping stiff moving least squares grid approximation. To explicitly infer the stiff moving least squares warping, which implicitly balances between global rigidity and local flexibility, a linear convolutional network is utilised. Our method is fully automated and requires no user preparation or input. The use of video stabilization is crucial in both amateur and professional filming. As a result, there are several mechanical, optical, and computational solutions. Stabilization may be used to capture handheld photos with lengthy exposure durations in still image photography as well.