自动视神经分析对青光眼的诊断支持

Jin Yu, S. Abidi, P. Artes, A. McIntyre, M. Heywood
{"title":"自动视神经分析对青光眼的诊断支持","authors":"Jin Yu, S. Abidi, P. Artes, A. McIntyre, M. Heywood","doi":"10.1109/CBMS.2005.36","DOIUrl":null,"url":null,"abstract":"The availability of modern imaging techniques such as confocal scanning laser tomography (CSLT) for capturing high-quality optic nerve images offer the potential for developing automatic and objective methods for supporting clinical decision-making in glaucoma. We present a hybrid approach that features the analysis of CSLT images using moment methods to derive abstract image defining features, and the use of these features to train classifiers for automatically distinguishing CSLT images of healthy and diseased optic nerves. As a first step, in this paper, we present investigations in feature subset selection methods for reducing the relatively large input space produced by the moment methods. Our results demonstrate that our methods discriminate between healthy and glaucomatous optic nerves based on shape information automatically derived from CSLT tomography images.","PeriodicalId":119367,"journal":{"name":"18th IEEE Symposium on Computer-Based Medical Systems (CBMS'05)","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2005-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"17","resultStr":"{\"title\":\"Automated optic nerve analysis for diagnostic support in glaucoma\",\"authors\":\"Jin Yu, S. Abidi, P. Artes, A. McIntyre, M. Heywood\",\"doi\":\"10.1109/CBMS.2005.36\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The availability of modern imaging techniques such as confocal scanning laser tomography (CSLT) for capturing high-quality optic nerve images offer the potential for developing automatic and objective methods for supporting clinical decision-making in glaucoma. We present a hybrid approach that features the analysis of CSLT images using moment methods to derive abstract image defining features, and the use of these features to train classifiers for automatically distinguishing CSLT images of healthy and diseased optic nerves. As a first step, in this paper, we present investigations in feature subset selection methods for reducing the relatively large input space produced by the moment methods. Our results demonstrate that our methods discriminate between healthy and glaucomatous optic nerves based on shape information automatically derived from CSLT tomography images.\",\"PeriodicalId\":119367,\"journal\":{\"name\":\"18th IEEE Symposium on Computer-Based Medical Systems (CBMS'05)\",\"volume\":\"10 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2005-06-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"17\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"18th IEEE Symposium on Computer-Based Medical Systems (CBMS'05)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CBMS.2005.36\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"18th IEEE Symposium on Computer-Based Medical Systems (CBMS'05)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CBMS.2005.36","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 17

摘要

现代成像技术的可用性,如共聚焦扫描激光断层扫描(CSLT),用于捕获高质量的视神经图像,为开发支持青光眼临床决策的自动和客观方法提供了潜力。我们提出了一种混合方法,使用矩方法对CSLT图像进行分析,得出抽象的图像定义特征,并使用这些特征来训练分类器,以自动区分健康和病变视神经的CSLT图像。作为第一步,在本文中,我们研究了特征子集选择方法,以减少由矩量方法产生的相对较大的输入空间。我们的研究结果表明,我们的方法基于CSLT断层图像自动导出的形状信息来区分健康和青光眼视神经。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Automated optic nerve analysis for diagnostic support in glaucoma
The availability of modern imaging techniques such as confocal scanning laser tomography (CSLT) for capturing high-quality optic nerve images offer the potential for developing automatic and objective methods for supporting clinical decision-making in glaucoma. We present a hybrid approach that features the analysis of CSLT images using moment methods to derive abstract image defining features, and the use of these features to train classifiers for automatically distinguishing CSLT images of healthy and diseased optic nerves. As a first step, in this paper, we present investigations in feature subset selection methods for reducing the relatively large input space produced by the moment methods. Our results demonstrate that our methods discriminate between healthy and glaucomatous optic nerves based on shape information automatically derived from CSLT tomography images.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信