Yi Liu, Liangjie Zhang, Ruihua Song, Jian-Yun Nie, Ji-Rong Wen
{"title":"聚类查询以获得更好的文档排名","authors":"Yi Liu, Liangjie Zhang, Ruihua Song, Jian-Yun Nie, Ji-Rong Wen","doi":"10.1145/1645953.1646174","DOIUrl":null,"url":null,"abstract":"Different queries require different ranking methods. It is however challenging to determine what queries are similar, and how to rank documents for them. In this paper, we propose a new method to cluster queries according to the similarity determined based on URLs in their answers. We then train specific ranking models for each query cluster. In addition, a cluster-specific measure of authority is defined to favor documents from authoritative websites on the corresponding topics. The proposed approach is tested using data from a search engine. It turns out that our proposed topic-dependent models can significantly improve the search results of eight most popular categories of queries.","PeriodicalId":286251,"journal":{"name":"Proceedings of the 18th ACM conference on Information and knowledge management","volume":"50 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Clustering queries for better document ranking\",\"authors\":\"Yi Liu, Liangjie Zhang, Ruihua Song, Jian-Yun Nie, Ji-Rong Wen\",\"doi\":\"10.1145/1645953.1646174\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Different queries require different ranking methods. It is however challenging to determine what queries are similar, and how to rank documents for them. In this paper, we propose a new method to cluster queries according to the similarity determined based on URLs in their answers. We then train specific ranking models for each query cluster. In addition, a cluster-specific measure of authority is defined to favor documents from authoritative websites on the corresponding topics. The proposed approach is tested using data from a search engine. It turns out that our proposed topic-dependent models can significantly improve the search results of eight most popular categories of queries.\",\"PeriodicalId\":286251,\"journal\":{\"name\":\"Proceedings of the 18th ACM conference on Information and knowledge management\",\"volume\":\"50 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-11-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 18th ACM conference on Information and knowledge management\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/1645953.1646174\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 18th ACM conference on Information and knowledge management","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1645953.1646174","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Different queries require different ranking methods. It is however challenging to determine what queries are similar, and how to rank documents for them. In this paper, we propose a new method to cluster queries according to the similarity determined based on URLs in their answers. We then train specific ranking models for each query cluster. In addition, a cluster-specific measure of authority is defined to favor documents from authoritative websites on the corresponding topics. The proposed approach is tested using data from a search engine. It turns out that our proposed topic-dependent models can significantly improve the search results of eight most popular categories of queries.