强化学习在软件复兴中的应用

H. Okamura, T. Dohi
{"title":"强化学习在软件复兴中的应用","authors":"H. Okamura, T. Dohi","doi":"10.1109/ISADS.2011.92","DOIUrl":null,"url":null,"abstract":"Software rejuvenation is a preventive and proactive maintenance solution that is particularly useful for counteracting the phenomenon of software aging. Hence, it should be ideally triggered adaptively without the complete knowledge on system failure (degradation) time distribution in operational phase. In this paper we consider an operational software system with multiple degradation levels and derive the optimal software rejuvenation policy maximizing the steady-state system availability, via the semi-Markov decision process. We develop a statistically non-parametric algorithm to estimate the optimal software rejuvenation schedule. Then, the reinforcement learning algorithm, called Q learning, is used for developing an on-line adaptive algorithm. A numerical example is presented to investigate asymptotic behavior of the resulting on-line adaptive algorithm.","PeriodicalId":221833,"journal":{"name":"2011 Tenth International Symposium on Autonomous Decentralized Systems","volume":"27 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-03-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":"{\"title\":\"Application of Reinforcement Learning to Software Rejuvenation\",\"authors\":\"H. Okamura, T. Dohi\",\"doi\":\"10.1109/ISADS.2011.92\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Software rejuvenation is a preventive and proactive maintenance solution that is particularly useful for counteracting the phenomenon of software aging. Hence, it should be ideally triggered adaptively without the complete knowledge on system failure (degradation) time distribution in operational phase. In this paper we consider an operational software system with multiple degradation levels and derive the optimal software rejuvenation policy maximizing the steady-state system availability, via the semi-Markov decision process. We develop a statistically non-parametric algorithm to estimate the optimal software rejuvenation schedule. Then, the reinforcement learning algorithm, called Q learning, is used for developing an on-line adaptive algorithm. A numerical example is presented to investigate asymptotic behavior of the resulting on-line adaptive algorithm.\",\"PeriodicalId\":221833,\"journal\":{\"name\":\"2011 Tenth International Symposium on Autonomous Decentralized Systems\",\"volume\":\"27 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-03-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"13\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 Tenth International Symposium on Autonomous Decentralized Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISADS.2011.92\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 Tenth International Symposium on Autonomous Decentralized Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISADS.2011.92","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

摘要

软件再生是一种预防性和前瞻性的维护解决方案,对于对抗软件老化现象特别有用。因此,理想情况下,在不完全了解运行阶段系统故障(退化)时间分布的情况下,应该自适应触发。本文考虑一个具有多重退化水平的运行软件系统,通过半马尔可夫决策过程,导出了使系统稳态可用性最大化的最优软件再生策略。我们开发了一种统计非参数算法来估计最优的软件再生计划。然后,利用强化学习算法Q学习,开发了一种在线自适应算法。最后给出了一个数值算例,研究了所得到的在线自适应算法的渐近行为。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Application of Reinforcement Learning to Software Rejuvenation
Software rejuvenation is a preventive and proactive maintenance solution that is particularly useful for counteracting the phenomenon of software aging. Hence, it should be ideally triggered adaptively without the complete knowledge on system failure (degradation) time distribution in operational phase. In this paper we consider an operational software system with multiple degradation levels and derive the optimal software rejuvenation policy maximizing the steady-state system availability, via the semi-Markov decision process. We develop a statistically non-parametric algorithm to estimate the optimal software rejuvenation schedule. Then, the reinforcement learning algorithm, called Q learning, is used for developing an on-line adaptive algorithm. A numerical example is presented to investigate asymptotic behavior of the resulting on-line adaptive algorithm.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信