多查询异常检测数据流:海报

Lei Cao, Jiayuan Wang, Elke A. Rundensteiner
{"title":"多查询异常检测数据流:海报","authors":"Lei Cao, Jiayuan Wang, Elke A. Rundensteiner","doi":"10.1145/2933267.2933292","DOIUrl":null,"url":null,"abstract":"Real-time analytics of anomalous phenomena on streaming data typically relies on processing a large variety of continuous outlier detection requests, each configured with different parameter settings. The processing of such complex outlier analytics workloads is resource consuming due to the algorithmic complexity of the outlier mining process. In this work we propose a sharing-aware multi-query execution strategy for outlier detection on data streams called SOP. The key insight of SOP is to transform the problem of handling a multi-query outlier analytics workload into a single-query skyline computation problem. SOP achieves minimal utilization of both computational and memory resources for the processing of these complex outlier analytics workload.","PeriodicalId":277061,"journal":{"name":"Proceedings of the 10th ACM International Conference on Distributed and Event-based Systems","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Multi-query outlier detection over data streams: poster\",\"authors\":\"Lei Cao, Jiayuan Wang, Elke A. Rundensteiner\",\"doi\":\"10.1145/2933267.2933292\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Real-time analytics of anomalous phenomena on streaming data typically relies on processing a large variety of continuous outlier detection requests, each configured with different parameter settings. The processing of such complex outlier analytics workloads is resource consuming due to the algorithmic complexity of the outlier mining process. In this work we propose a sharing-aware multi-query execution strategy for outlier detection on data streams called SOP. The key insight of SOP is to transform the problem of handling a multi-query outlier analytics workload into a single-query skyline computation problem. SOP achieves minimal utilization of both computational and memory resources for the processing of these complex outlier analytics workload.\",\"PeriodicalId\":277061,\"journal\":{\"name\":\"Proceedings of the 10th ACM International Conference on Distributed and Event-based Systems\",\"volume\":\"16 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-06-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 10th ACM International Conference on Distributed and Event-based Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2933267.2933292\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 10th ACM International Conference on Distributed and Event-based Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2933267.2933292","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

流数据异常现象的实时分析通常依赖于处理大量连续的异常值检测请求,每个请求都配置有不同的参数设置。由于离群值挖掘过程的算法复杂性,处理这种复杂的离群值分析工作负载是消耗资源的。在这项工作中,我们提出了一种共享感知的多查询执行策略,用于数据流的异常值检测,称为SOP。SOP的关键是将处理多查询离群值分析工作负载的问题转化为单查询天际线计算问题。在处理这些复杂的离群分析工作负载时,SOP实现了对计算和内存资源的最小利用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Multi-query outlier detection over data streams: poster
Real-time analytics of anomalous phenomena on streaming data typically relies on processing a large variety of continuous outlier detection requests, each configured with different parameter settings. The processing of such complex outlier analytics workloads is resource consuming due to the algorithmic complexity of the outlier mining process. In this work we propose a sharing-aware multi-query execution strategy for outlier detection on data streams called SOP. The key insight of SOP is to transform the problem of handling a multi-query outlier analytics workload into a single-query skyline computation problem. SOP achieves minimal utilization of both computational and memory resources for the processing of these complex outlier analytics workload.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信