通过分解减少基因调控网络

Luonan Chen, Ruiqi Wang, K. Aihara
{"title":"通过分解减少基因调控网络","authors":"Luonan Chen, Ruiqi Wang, K. Aihara","doi":"10.1109/CSBW.2005.117","DOIUrl":null,"url":null,"abstract":"This paper deals with the theoretical framework derived for gene regulatory networks with stochasticity. We exploit the fast-slow dynamics of biological systems to reduce the dimensionality, and take advantage of special interaction structure of fast-slow variables to simplify the mathematical model, which significantly reduce the complexity of gene networks. The numerical simulation also confirmed the effectiveness of our method, which can be applied to a large-scale quantitative simulation of cellular dynamics.","PeriodicalId":123531,"journal":{"name":"2005 IEEE Computational Systems Bioinformatics Conference - Workshops (CSBW'05)","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2005-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Reducing gene regulatory networks by decomposition\",\"authors\":\"Luonan Chen, Ruiqi Wang, K. Aihara\",\"doi\":\"10.1109/CSBW.2005.117\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper deals with the theoretical framework derived for gene regulatory networks with stochasticity. We exploit the fast-slow dynamics of biological systems to reduce the dimensionality, and take advantage of special interaction structure of fast-slow variables to simplify the mathematical model, which significantly reduce the complexity of gene networks. The numerical simulation also confirmed the effectiveness of our method, which can be applied to a large-scale quantitative simulation of cellular dynamics.\",\"PeriodicalId\":123531,\"journal\":{\"name\":\"2005 IEEE Computational Systems Bioinformatics Conference - Workshops (CSBW'05)\",\"volume\":\"9 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2005-08-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2005 IEEE Computational Systems Bioinformatics Conference - Workshops (CSBW'05)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CSBW.2005.117\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2005 IEEE Computational Systems Bioinformatics Conference - Workshops (CSBW'05)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CSBW.2005.117","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文讨论了具有随机性的基因调控网络的理论框架。我们利用生物系统的快慢动力学来降低维数,利用快慢变量的特殊相互作用结构来简化数学模型,从而显著降低了基因网络的复杂性。数值模拟结果也证实了该方法的有效性,可应用于细胞动力学的大规模定量模拟。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Reducing gene regulatory networks by decomposition
This paper deals with the theoretical framework derived for gene regulatory networks with stochasticity. We exploit the fast-slow dynamics of biological systems to reduce the dimensionality, and take advantage of special interaction structure of fast-slow variables to simplify the mathematical model, which significantly reduce the complexity of gene networks. The numerical simulation also confirmed the effectiveness of our method, which can be applied to a large-scale quantitative simulation of cellular dynamics.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信