基于近似矩阵反演的大规模MIMO检测增强深度学习

Ali J. Almasadeh, Khawla A. Alnajjar, M. Albreem
{"title":"基于近似矩阵反演的大规模MIMO检测增强深度学习","authors":"Ali J. Almasadeh, Khawla A. Alnajjar, M. Albreem","doi":"10.1109/ICCSPA55860.2022.10019100","DOIUrl":null,"url":null,"abstract":"Massive multiple-input multiple-output (MIMO) is a crucial technology in fifth-generation (5G) and beyond 5G (B5G). However, the huge number of antennas used in massive MIMO systems causes a high computational complexity during signal detection. In this paper, we propose an efficient massive MIMO detection technique which is based on approximate matrix inversion methods and deep learning to enhance the system performance while keeping computational complexity low. Three approximate methods which are Gauss–Seidel (GS), successive over-relaxation (SOR), and conjugate gradient (CG) are exploited for the initialization of a modified version of the MM network (MMNet) algorithm. The performance of the proposed technique is validated under both Gaussian and realistic channel scenarios, i.e., Quadriga channels models. Simulation results show that the proposed technique outperforms MMNet, minimum mean square estimation (MMSE), detection network (DetNet), and orthogonal approximate message passing deep net (OAMP-Net) in terms of symbol error rate (SER) during offline training. It also provides a significant SER improvement of up to 87% when compared to MMNet in the online training scenario.","PeriodicalId":106639,"journal":{"name":"2022 5th International Conference on Communications, Signal Processing, and their Applications (ICCSPA)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2022-12-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Enhanced Deep Learning for Massive MIMO Detection Using Approximate Matrix Inversion\",\"authors\":\"Ali J. Almasadeh, Khawla A. Alnajjar, M. Albreem\",\"doi\":\"10.1109/ICCSPA55860.2022.10019100\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Massive multiple-input multiple-output (MIMO) is a crucial technology in fifth-generation (5G) and beyond 5G (B5G). However, the huge number of antennas used in massive MIMO systems causes a high computational complexity during signal detection. In this paper, we propose an efficient massive MIMO detection technique which is based on approximate matrix inversion methods and deep learning to enhance the system performance while keeping computational complexity low. Three approximate methods which are Gauss–Seidel (GS), successive over-relaxation (SOR), and conjugate gradient (CG) are exploited for the initialization of a modified version of the MM network (MMNet) algorithm. The performance of the proposed technique is validated under both Gaussian and realistic channel scenarios, i.e., Quadriga channels models. Simulation results show that the proposed technique outperforms MMNet, minimum mean square estimation (MMSE), detection network (DetNet), and orthogonal approximate message passing deep net (OAMP-Net) in terms of symbol error rate (SER) during offline training. It also provides a significant SER improvement of up to 87% when compared to MMNet in the online training scenario.\",\"PeriodicalId\":106639,\"journal\":{\"name\":\"2022 5th International Conference on Communications, Signal Processing, and their Applications (ICCSPA)\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-12-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 5th International Conference on Communications, Signal Processing, and their Applications (ICCSPA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCSPA55860.2022.10019100\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 5th International Conference on Communications, Signal Processing, and their Applications (ICCSPA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCSPA55860.2022.10019100","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

大规模多输入多输出(MIMO)是第五代(5G)及以后(B5G)的关键技术。然而,在大规模MIMO系统中使用的大量天线导致信号检测过程中的计算复杂度很高。在本文中,我们提出了一种基于近似矩阵反演方法和深度学习的高效大规模MIMO检测技术,以提高系统性能,同时保持较低的计算复杂度。利用高斯-塞德尔(GS)、连续过松弛(SOR)和共轭梯度(CG)三种近似方法初始化了改进版的MM网络(MMNet)算法。在高斯信道和实际信道(即Quadriga信道模型)下验证了所提出技术的性能。仿真结果表明,该方法在离线训练时的符号误差率(SER)方面优于MMNet、最小均方估计(MMSE)、检测网络(DetNet)和正交近似消息传递深度网络(OAMP-Net)。与在线培训场景中的MMNet相比,它还提供了高达87%的显著SER改进。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Enhanced Deep Learning for Massive MIMO Detection Using Approximate Matrix Inversion
Massive multiple-input multiple-output (MIMO) is a crucial technology in fifth-generation (5G) and beyond 5G (B5G). However, the huge number of antennas used in massive MIMO systems causes a high computational complexity during signal detection. In this paper, we propose an efficient massive MIMO detection technique which is based on approximate matrix inversion methods and deep learning to enhance the system performance while keeping computational complexity low. Three approximate methods which are Gauss–Seidel (GS), successive over-relaxation (SOR), and conjugate gradient (CG) are exploited for the initialization of a modified version of the MM network (MMNet) algorithm. The performance of the proposed technique is validated under both Gaussian and realistic channel scenarios, i.e., Quadriga channels models. Simulation results show that the proposed technique outperforms MMNet, minimum mean square estimation (MMSE), detection network (DetNet), and orthogonal approximate message passing deep net (OAMP-Net) in terms of symbol error rate (SER) during offline training. It also provides a significant SER improvement of up to 87% when compared to MMNet in the online training scenario.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信