使用机器学习的室内太赫兹路径损耗预测

Nagma Elburki, Affes Sofiene
{"title":"使用机器学习的室内太赫兹路径损耗预测","authors":"Nagma Elburki, Affes Sofiene","doi":"10.1109/IC_ASET58101.2023.10151166","DOIUrl":null,"url":null,"abstract":"In this paper, we investigate the robustness of Machine Learning (ML) based path loss prediction models within the context of THz band for indoor environment applications. This study highlights the limitations of both empirical and deterministic models and provide solution to improve the prediction's accuracy. To do so, we investigate four different ML models which are: Gradient Boosting, Random Forest, Multivariate Polynomial and Deep Learning. The Random Forest and the Deep Learning models show a higher prediction accuracy compared to the other two techniques due to the inherently intensive learning of these models.","PeriodicalId":272261,"journal":{"name":"2023 IEEE International Conference on Advanced Systems and Emergent Technologies (IC_ASET)","volume":"51 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-04-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"TeraHertz Path-Loss Prediction Indoor using Machine Learning\",\"authors\":\"Nagma Elburki, Affes Sofiene\",\"doi\":\"10.1109/IC_ASET58101.2023.10151166\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we investigate the robustness of Machine Learning (ML) based path loss prediction models within the context of THz band for indoor environment applications. This study highlights the limitations of both empirical and deterministic models and provide solution to improve the prediction's accuracy. To do so, we investigate four different ML models which are: Gradient Boosting, Random Forest, Multivariate Polynomial and Deep Learning. The Random Forest and the Deep Learning models show a higher prediction accuracy compared to the other two techniques due to the inherently intensive learning of these models.\",\"PeriodicalId\":272261,\"journal\":{\"name\":\"2023 IEEE International Conference on Advanced Systems and Emergent Technologies (IC_ASET)\",\"volume\":\"51 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-04-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 IEEE International Conference on Advanced Systems and Emergent Technologies (IC_ASET)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IC_ASET58101.2023.10151166\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE International Conference on Advanced Systems and Emergent Technologies (IC_ASET)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IC_ASET58101.2023.10151166","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们研究了基于机器学习(ML)的路径损失预测模型在太赫兹波段的室内环境应用中的鲁棒性。本研究强调了经验模型和确定性模型的局限性,并提出了提高预测精度的解决方案。为此,我们研究了四种不同的机器学习模型:梯度增强、随机森林、多元多项式和深度学习。与其他两种技术相比,随机森林和深度学习模型显示出更高的预测精度,这是由于这些模型固有的密集学习。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
TeraHertz Path-Loss Prediction Indoor using Machine Learning
In this paper, we investigate the robustness of Machine Learning (ML) based path loss prediction models within the context of THz band for indoor environment applications. This study highlights the limitations of both empirical and deterministic models and provide solution to improve the prediction's accuracy. To do so, we investigate four different ML models which are: Gradient Boosting, Random Forest, Multivariate Polynomial and Deep Learning. The Random Forest and the Deep Learning models show a higher prediction accuracy compared to the other two techniques due to the inherently intensive learning of these models.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信