Nikos Fazakis, Georgios Kostopoulos, Stamatis Karlos, S. Kotsiantis, K. Sgarbas
{"title":"自我训练的极端梯度增强树","authors":"Nikos Fazakis, Georgios Kostopoulos, Stamatis Karlos, S. Kotsiantis, K. Sgarbas","doi":"10.1109/IISA.2019.8900737","DOIUrl":null,"url":null,"abstract":"Semi-Supervised Learning (SSL) is an ever-growing research area offering a powerful set of methods, either single or multi-view, for exploiting both labeled and unlabeled instances in the most effective manner. Self-training is a representative SSL algorithm which has been efficiently implemented for solving several classification problems in a wide range of scientific fields. Moreover, self-training has served as the base for the development of several self-labeled methods. In addition, gradient boosting is an advanced machine learning technique, a boosting algorithm for both classification and regression problems, which produces a predictive model in the form of decision trees. In this context, the principal objective of this paper is to put forward an improved self-training algorithm for classification tasks utilizing the efficacy of eXtreme Gradient Boosting (XGBoost) trees in a self-labeled scheme in order to build a highly accurate and robust classification model. A number of experiments on benchmark datasets were executed demonstrating the superiority of the proposed method over representative semi-supervised methods, as statistically verified by the Friedman non-parametric test.","PeriodicalId":371385,"journal":{"name":"2019 10th International Conference on Information, Intelligence, Systems and Applications (IISA)","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Self-trained eXtreme Gradient Boosting Trees\",\"authors\":\"Nikos Fazakis, Georgios Kostopoulos, Stamatis Karlos, S. Kotsiantis, K. Sgarbas\",\"doi\":\"10.1109/IISA.2019.8900737\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Semi-Supervised Learning (SSL) is an ever-growing research area offering a powerful set of methods, either single or multi-view, for exploiting both labeled and unlabeled instances in the most effective manner. Self-training is a representative SSL algorithm which has been efficiently implemented for solving several classification problems in a wide range of scientific fields. Moreover, self-training has served as the base for the development of several self-labeled methods. In addition, gradient boosting is an advanced machine learning technique, a boosting algorithm for both classification and regression problems, which produces a predictive model in the form of decision trees. In this context, the principal objective of this paper is to put forward an improved self-training algorithm for classification tasks utilizing the efficacy of eXtreme Gradient Boosting (XGBoost) trees in a self-labeled scheme in order to build a highly accurate and robust classification model. A number of experiments on benchmark datasets were executed demonstrating the superiority of the proposed method over representative semi-supervised methods, as statistically verified by the Friedman non-parametric test.\",\"PeriodicalId\":371385,\"journal\":{\"name\":\"2019 10th International Conference on Information, Intelligence, Systems and Applications (IISA)\",\"volume\":\"15 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-07-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 10th International Conference on Information, Intelligence, Systems and Applications (IISA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IISA.2019.8900737\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 10th International Conference on Information, Intelligence, Systems and Applications (IISA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IISA.2019.8900737","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Semi-Supervised Learning (SSL) is an ever-growing research area offering a powerful set of methods, either single or multi-view, for exploiting both labeled and unlabeled instances in the most effective manner. Self-training is a representative SSL algorithm which has been efficiently implemented for solving several classification problems in a wide range of scientific fields. Moreover, self-training has served as the base for the development of several self-labeled methods. In addition, gradient boosting is an advanced machine learning technique, a boosting algorithm for both classification and regression problems, which produces a predictive model in the form of decision trees. In this context, the principal objective of this paper is to put forward an improved self-training algorithm for classification tasks utilizing the efficacy of eXtreme Gradient Boosting (XGBoost) trees in a self-labeled scheme in order to build a highly accurate and robust classification model. A number of experiments on benchmark datasets were executed demonstrating the superiority of the proposed method over representative semi-supervised methods, as statistically verified by the Friedman non-parametric test.