蜂群特征选择

H. Firpi, E. Goodman
{"title":"蜂群特征选择","authors":"H. Firpi, E. Goodman","doi":"10.1109/AIPR.2004.41","DOIUrl":null,"url":null,"abstract":"Feature selection is an important part of pattern recognition, helping to overcome the curse of dimensionality problem with classifiers, among other systems. In this work, we introduce a feature selection method using particle swarm optimization. Experiments using data of others and hyperspectral remote sensed data are used to measure the performance of the algorithm. Its comparison with a genetic algorithm is also shown.","PeriodicalId":120814,"journal":{"name":"33rd Applied Imagery Pattern Recognition Workshop (AIPR'04)","volume":"29 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2004-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"104","resultStr":"{\"title\":\"Swarmed feature selection\",\"authors\":\"H. Firpi, E. Goodman\",\"doi\":\"10.1109/AIPR.2004.41\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Feature selection is an important part of pattern recognition, helping to overcome the curse of dimensionality problem with classifiers, among other systems. In this work, we introduce a feature selection method using particle swarm optimization. Experiments using data of others and hyperspectral remote sensed data are used to measure the performance of the algorithm. Its comparison with a genetic algorithm is also shown.\",\"PeriodicalId\":120814,\"journal\":{\"name\":\"33rd Applied Imagery Pattern Recognition Workshop (AIPR'04)\",\"volume\":\"29 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2004-10-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"104\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"33rd Applied Imagery Pattern Recognition Workshop (AIPR'04)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/AIPR.2004.41\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"33rd Applied Imagery Pattern Recognition Workshop (AIPR'04)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AIPR.2004.41","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 104

摘要

特征选择是模式识别的重要组成部分,有助于克服分类器和其他系统的维数问题。本文提出了一种基于粒子群优化的特征选择方法。利用他人数据和高光谱遥感数据进行实验,对算法的性能进行了测试。并与遗传算法进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Swarmed feature selection
Feature selection is an important part of pattern recognition, helping to overcome the curse of dimensionality problem with classifiers, among other systems. In this work, we introduce a feature selection method using particle swarm optimization. Experiments using data of others and hyperspectral remote sensed data are used to measure the performance of the algorithm. Its comparison with a genetic algorithm is also shown.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信