{"title":"蜂群特征选择","authors":"H. Firpi, E. Goodman","doi":"10.1109/AIPR.2004.41","DOIUrl":null,"url":null,"abstract":"Feature selection is an important part of pattern recognition, helping to overcome the curse of dimensionality problem with classifiers, among other systems. In this work, we introduce a feature selection method using particle swarm optimization. Experiments using data of others and hyperspectral remote sensed data are used to measure the performance of the algorithm. Its comparison with a genetic algorithm is also shown.","PeriodicalId":120814,"journal":{"name":"33rd Applied Imagery Pattern Recognition Workshop (AIPR'04)","volume":"29 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2004-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"104","resultStr":"{\"title\":\"Swarmed feature selection\",\"authors\":\"H. Firpi, E. Goodman\",\"doi\":\"10.1109/AIPR.2004.41\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Feature selection is an important part of pattern recognition, helping to overcome the curse of dimensionality problem with classifiers, among other systems. In this work, we introduce a feature selection method using particle swarm optimization. Experiments using data of others and hyperspectral remote sensed data are used to measure the performance of the algorithm. Its comparison with a genetic algorithm is also shown.\",\"PeriodicalId\":120814,\"journal\":{\"name\":\"33rd Applied Imagery Pattern Recognition Workshop (AIPR'04)\",\"volume\":\"29 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2004-10-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"104\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"33rd Applied Imagery Pattern Recognition Workshop (AIPR'04)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/AIPR.2004.41\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"33rd Applied Imagery Pattern Recognition Workshop (AIPR'04)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AIPR.2004.41","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Feature selection is an important part of pattern recognition, helping to overcome the curse of dimensionality problem with classifiers, among other systems. In this work, we introduce a feature selection method using particle swarm optimization. Experiments using data of others and hyperspectral remote sensed data are used to measure the performance of the algorithm. Its comparison with a genetic algorithm is also shown.