lp可解码多排列码的编码和解码算法

Xishuo Liu, S. Draper
{"title":"lp可解码多排列码的编码和解码算法","authors":"Xishuo Liu, S. Draper","doi":"10.1109/ITW.2015.7133088","DOIUrl":null,"url":null,"abstract":"LP-decodable multipermutation codes are a class of multipermutation codes that can be decoded using linear programming (LP). These codes are defined using linearly constrained multipermutation matrices, which are binary matrices that satisfy particular row sum and column sum constraints. Although generic LP solvers are capable of solving the LP decoding problem, they are not efficient in general because they do not leverage structures of the problem. This motivates us to study efficient decoding algorithms. In this paper, we focus on encoding and decoding algorithms for LP-decodable multipermutation codes. We first describe an algorithm that “ranks” multipermutations. In other words, it maps consecutive integers, one by one, to an ordered list of multipermutations. By leveraging this algorithm, we develop an encoding algorithm for a code proposed by Shieh and Tsai. Regarding decoding algorithms we propose an iterative decoding algorithm based on the alternating direction method of multipliers (ADMM), each iteration of which can be solved efficiently using off-the-shelf techniques. Finally, we study decoding performances of different decoders via simulation.","PeriodicalId":174797,"journal":{"name":"2015 IEEE Information Theory Workshop (ITW)","volume":"59 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Encoding and decoding algorithms for LP-decodable multipermutation codes\",\"authors\":\"Xishuo Liu, S. Draper\",\"doi\":\"10.1109/ITW.2015.7133088\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"LP-decodable multipermutation codes are a class of multipermutation codes that can be decoded using linear programming (LP). These codes are defined using linearly constrained multipermutation matrices, which are binary matrices that satisfy particular row sum and column sum constraints. Although generic LP solvers are capable of solving the LP decoding problem, they are not efficient in general because they do not leverage structures of the problem. This motivates us to study efficient decoding algorithms. In this paper, we focus on encoding and decoding algorithms for LP-decodable multipermutation codes. We first describe an algorithm that “ranks” multipermutations. In other words, it maps consecutive integers, one by one, to an ordered list of multipermutations. By leveraging this algorithm, we develop an encoding algorithm for a code proposed by Shieh and Tsai. Regarding decoding algorithms we propose an iterative decoding algorithm based on the alternating direction method of multipliers (ADMM), each iteration of which can be solved efficiently using off-the-shelf techniques. Finally, we study decoding performances of different decoders via simulation.\",\"PeriodicalId\":174797,\"journal\":{\"name\":\"2015 IEEE Information Theory Workshop (ITW)\",\"volume\":\"59 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-06-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 IEEE Information Theory Workshop (ITW)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ITW.2015.7133088\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE Information Theory Workshop (ITW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ITW.2015.7133088","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

LP可解码多置换码是一类可以使用线性规划(LP)进行解码的多置换码。这些代码是使用线性约束的多置换矩阵定义的,这些矩阵是满足特定行和和约束的二进制矩阵。尽管通用LP求解器能够解决LP解码问题,但它们通常效率不高,因为它们没有利用问题的结构。这促使我们研究高效的解码算法。本文主要研究了lp可解码多置换码的编码和解码算法。我们首先描述了一个对多重排列进行“排序”的算法。换句话说,它将连续整数一个接一个地映射到多重排列的有序列表。利用该算法,我们为Shieh和Tsai提出的代码开发了一种编码算法。在译码算法方面,我们提出了一种基于乘法器交替方向法(ADMM)的迭代译码算法,该算法的每次迭代都可以使用现成的技术高效地求解。最后,通过仿真研究了不同解码器的译码性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Encoding and decoding algorithms for LP-decodable multipermutation codes
LP-decodable multipermutation codes are a class of multipermutation codes that can be decoded using linear programming (LP). These codes are defined using linearly constrained multipermutation matrices, which are binary matrices that satisfy particular row sum and column sum constraints. Although generic LP solvers are capable of solving the LP decoding problem, they are not efficient in general because they do not leverage structures of the problem. This motivates us to study efficient decoding algorithms. In this paper, we focus on encoding and decoding algorithms for LP-decodable multipermutation codes. We first describe an algorithm that “ranks” multipermutations. In other words, it maps consecutive integers, one by one, to an ordered list of multipermutations. By leveraging this algorithm, we develop an encoding algorithm for a code proposed by Shieh and Tsai. Regarding decoding algorithms we propose an iterative decoding algorithm based on the alternating direction method of multipliers (ADMM), each iteration of which can be solved efficiently using off-the-shelf techniques. Finally, we study decoding performances of different decoders via simulation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信