物联网体育分析平台

Mahanth K. Gowda, Ashutosh Dhekne, Sheng Shen, Romit Roy Choudhury, Sharon Xue Yang, Lei Yang, S. Golwalkar, Alexander Essanian
{"title":"物联网体育分析平台","authors":"Mahanth K. Gowda, Ashutosh Dhekne, Sheng Shen, Romit Roy Choudhury, Sharon Xue Yang, Lei Yang, S. Golwalkar, Alexander Essanian","doi":"10.1145/3191789.3191793","DOIUrl":null,"url":null,"abstract":"This paper is an experience report on IoT platforms for sports analytics. In our prior work [11], we proposed iBall, a system that explores the possibility of bringing IoT to sports analytics, particularly to the game of Cricket. iBall develops solutions to track a ball's 3D trajectory and spin with inexpensive sensors and radios embedded in the ball. Towards this end, iBall performs fusion of wireless and inertial sensory data and integrates them into physics-based motion models of a ball in flight. The median ball location error is at 8cm while rotational error remains below 12° even at the end of the flight. The results do not rely on training, hence we expect the core techniques to extend to other sports like baseball, with some domain-specific modifications.","PeriodicalId":213775,"journal":{"name":"GetMobile Mob. Comput. Commun.","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"IoT Platform for Sports Analytics\",\"authors\":\"Mahanth K. Gowda, Ashutosh Dhekne, Sheng Shen, Romit Roy Choudhury, Sharon Xue Yang, Lei Yang, S. Golwalkar, Alexander Essanian\",\"doi\":\"10.1145/3191789.3191793\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper is an experience report on IoT platforms for sports analytics. In our prior work [11], we proposed iBall, a system that explores the possibility of bringing IoT to sports analytics, particularly to the game of Cricket. iBall develops solutions to track a ball's 3D trajectory and spin with inexpensive sensors and radios embedded in the ball. Towards this end, iBall performs fusion of wireless and inertial sensory data and integrates them into physics-based motion models of a ball in flight. The median ball location error is at 8cm while rotational error remains below 12° even at the end of the flight. The results do not rely on training, hence we expect the core techniques to extend to other sports like baseball, with some domain-specific modifications.\",\"PeriodicalId\":213775,\"journal\":{\"name\":\"GetMobile Mob. Comput. Commun.\",\"volume\":\"2 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-02-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"GetMobile Mob. Comput. Commun.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3191789.3191793\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"GetMobile Mob. Comput. Commun.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3191789.3191793","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

摘要

本文是一篇关于物联网体育分析平台的体验报告。在我们之前的工作[11]中,我们提出了iBall,这是一个探索将物联网引入体育分析,特别是板球比赛的可能性的系统。iBall开发了一种解决方案,通过嵌入在球中的廉价传感器和无线电来跟踪球的3D轨迹和旋转。为此,iBall执行无线和惯性传感数据的融合,并将它们集成到飞行中的球的基于物理的运动模型中。中位球定位误差为8cm,而旋转误差即使在飞行结束时也保持在12°以下。结果不依赖于训练,因此我们期望核心技术扩展到其他运动,如棒球,并进行一些特定领域的修改。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
IoT Platform for Sports Analytics
This paper is an experience report on IoT platforms for sports analytics. In our prior work [11], we proposed iBall, a system that explores the possibility of bringing IoT to sports analytics, particularly to the game of Cricket. iBall develops solutions to track a ball's 3D trajectory and spin with inexpensive sensors and radios embedded in the ball. Towards this end, iBall performs fusion of wireless and inertial sensory data and integrates them into physics-based motion models of a ball in flight. The median ball location error is at 8cm while rotational error remains below 12° even at the end of the flight. The results do not rely on training, hence we expect the core techniques to extend to other sports like baseball, with some domain-specific modifications.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信