{"title":"基于多偏置s参数的GaN HEMT电荷函数提取方法","authors":"Gian Piero Gibiino, A. Santarelli, F. Filicori","doi":"10.23919/EUMIC.2018.8539947","DOIUrl":null,"url":null,"abstract":"A charge function identification procedure for GaN-HEMTs is proposed. This is based on a frequency-domain integration of displacement current waveforms obtained from an auxiliary model extracted from multi-bias S-parameters. The method is compared with a similar technique recently proposed, which is instead based on direct acquisitions of large-signal waveforms at the transistor ports by means of a nonlinear vector network analyzer (NVNA). Comparisons between the two approaches are provided by using a 1-mm GaN-on-SiC HEMT, leading to conclude that thermal and trap-induced dispersion on charges have an impact quantified in ∼ 4% − 18% normalized mean square error on the displacement current prediction, depending on the waveforms considered.","PeriodicalId":248339,"journal":{"name":"2018 13th European Microwave Integrated Circuits Conference (EuMIC)","volume":"34 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"A Procedure for GaN HEMT Charge Functions Extraction from Multi-Bias S-Parameters\",\"authors\":\"Gian Piero Gibiino, A. Santarelli, F. Filicori\",\"doi\":\"10.23919/EUMIC.2018.8539947\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A charge function identification procedure for GaN-HEMTs is proposed. This is based on a frequency-domain integration of displacement current waveforms obtained from an auxiliary model extracted from multi-bias S-parameters. The method is compared with a similar technique recently proposed, which is instead based on direct acquisitions of large-signal waveforms at the transistor ports by means of a nonlinear vector network analyzer (NVNA). Comparisons between the two approaches are provided by using a 1-mm GaN-on-SiC HEMT, leading to conclude that thermal and trap-induced dispersion on charges have an impact quantified in ∼ 4% − 18% normalized mean square error on the displacement current prediction, depending on the waveforms considered.\",\"PeriodicalId\":248339,\"journal\":{\"name\":\"2018 13th European Microwave Integrated Circuits Conference (EuMIC)\",\"volume\":\"34 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 13th European Microwave Integrated Circuits Conference (EuMIC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.23919/EUMIC.2018.8539947\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 13th European Microwave Integrated Circuits Conference (EuMIC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/EUMIC.2018.8539947","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A Procedure for GaN HEMT Charge Functions Extraction from Multi-Bias S-Parameters
A charge function identification procedure for GaN-HEMTs is proposed. This is based on a frequency-domain integration of displacement current waveforms obtained from an auxiliary model extracted from multi-bias S-parameters. The method is compared with a similar technique recently proposed, which is instead based on direct acquisitions of large-signal waveforms at the transistor ports by means of a nonlinear vector network analyzer (NVNA). Comparisons between the two approaches are provided by using a 1-mm GaN-on-SiC HEMT, leading to conclude that thermal and trap-induced dispersion on charges have an impact quantified in ∼ 4% − 18% normalized mean square error on the displacement current prediction, depending on the waveforms considered.