{"title":"j -整数上量子纠错码的界","authors":"Eda Yildiz","doi":"10.1016/j.endm.2018.11.015","DOIUrl":null,"url":null,"abstract":"<div><p>There are some differences between quantum and classical error corrections [Nielsen M.A., and I.L. Chuang, “Quantum Computation and Quantum Information”, Cambridge University Press, Cambridge, 2002.]. Hence, these differences should be considered when a new procedure is performed. In our recent study, we construct new quantum error correcting codes over different mathematical structures. The classical codes over Eisenstein-Jacobi(EJ) integers are mentioned in [Huber, K., “<em>Codes over Eisenstein-Jacobi integers</em>”, Contemporary Mathematics <strong>168</strong> (1994), 165.]. There is an efficient algorithm for the encoding and decoding procedures of these codes [Huber, K., “<em>Codes over Eisenstein-Jacobi integers</em>”, Contemporary Mathematics <strong>168</strong> (1994), 165.]. For coding over two-dimensional signal spaces like QAM signals, block codes over these integers <em>p</em> = 7, 13, 19, 31, 37, 43, 61, … can be useful [Dong, X., C.B. Soh, E. Gunawan and L. Tang, “<em>Groups of Algebraic Integers used for Coding QAM Signals</em>”, Information Theory, IEEE <strong>44</strong> (1998), 1848–1860.]. Thus, in this study, we introduce quantum error correcting codes over EJ-integers. This type of quantum codes may lead to codes with some new and good parameters.</p></div>","PeriodicalId":35408,"journal":{"name":"Electronic Notes in Discrete Mathematics","volume":"70 ","pages":"Pages 89-94"},"PeriodicalIF":0.0000,"publicationDate":"2018-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.endm.2018.11.015","citationCount":"0","resultStr":"{\"title\":\"On Bounds for Quantum Error Correcting Codes over EJ-Integers\",\"authors\":\"Eda Yildiz\",\"doi\":\"10.1016/j.endm.2018.11.015\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>There are some differences between quantum and classical error corrections [Nielsen M.A., and I.L. Chuang, “Quantum Computation and Quantum Information”, Cambridge University Press, Cambridge, 2002.]. Hence, these differences should be considered when a new procedure is performed. In our recent study, we construct new quantum error correcting codes over different mathematical structures. The classical codes over Eisenstein-Jacobi(EJ) integers are mentioned in [Huber, K., “<em>Codes over Eisenstein-Jacobi integers</em>”, Contemporary Mathematics <strong>168</strong> (1994), 165.]. There is an efficient algorithm for the encoding and decoding procedures of these codes [Huber, K., “<em>Codes over Eisenstein-Jacobi integers</em>”, Contemporary Mathematics <strong>168</strong> (1994), 165.]. For coding over two-dimensional signal spaces like QAM signals, block codes over these integers <em>p</em> = 7, 13, 19, 31, 37, 43, 61, … can be useful [Dong, X., C.B. Soh, E. Gunawan and L. Tang, “<em>Groups of Algebraic Integers used for Coding QAM Signals</em>”, Information Theory, IEEE <strong>44</strong> (1998), 1848–1860.]. Thus, in this study, we introduce quantum error correcting codes over EJ-integers. This type of quantum codes may lead to codes with some new and good parameters.</p></div>\",\"PeriodicalId\":35408,\"journal\":{\"name\":\"Electronic Notes in Discrete Mathematics\",\"volume\":\"70 \",\"pages\":\"Pages 89-94\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/j.endm.2018.11.015\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Electronic Notes in Discrete Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1571065318302105\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electronic Notes in Discrete Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1571065318302105","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0
摘要
量子纠错与经典纠错之间存在一些差异[Nielsen m.a.和I.L. Chuang,“量子计算和量子信息”,剑桥大学出版社,剑桥,2002.]。因此,在执行新过程时应该考虑这些差异。在我们最近的研究中,我们在不同的数学结构上构造了新的量子纠错码。爱森斯坦-雅可比(EJ)整数上的经典码在[Huber, K.,“爱森斯坦-雅可比整数上的码”,当代数学168(1994),165.]中提到。对于这些码的编码和解码过程,存在一种有效的算法[Huber, K., " codes over Eisenstein-Jacobi整数",Contemporary Mathematics 168(1994), 165.]。对于像QAM信号这样的二维信号空间的编码,在这些整数p = 7,13,19,31,37,43,61,…上的分组编码是有用的[董晓东,苏长斌,E. Gunawan, L. Tang,“用于编码QAM信号的代数整数群”,信息理论,44 (1998),1848-1860 .]因此,在本研究中,我们在ej -整数上引入量子纠错码。这种类型的量子码可能导致具有一些新的和好的参数的码。
On Bounds for Quantum Error Correcting Codes over EJ-Integers
There are some differences between quantum and classical error corrections [Nielsen M.A., and I.L. Chuang, “Quantum Computation and Quantum Information”, Cambridge University Press, Cambridge, 2002.]. Hence, these differences should be considered when a new procedure is performed. In our recent study, we construct new quantum error correcting codes over different mathematical structures. The classical codes over Eisenstein-Jacobi(EJ) integers are mentioned in [Huber, K., “Codes over Eisenstein-Jacobi integers”, Contemporary Mathematics 168 (1994), 165.]. There is an efficient algorithm for the encoding and decoding procedures of these codes [Huber, K., “Codes over Eisenstein-Jacobi integers”, Contemporary Mathematics 168 (1994), 165.]. For coding over two-dimensional signal spaces like QAM signals, block codes over these integers p = 7, 13, 19, 31, 37, 43, 61, … can be useful [Dong, X., C.B. Soh, E. Gunawan and L. Tang, “Groups of Algebraic Integers used for Coding QAM Signals”, Information Theory, IEEE 44 (1998), 1848–1860.]. Thus, in this study, we introduce quantum error correcting codes over EJ-integers. This type of quantum codes may lead to codes with some new and good parameters.
期刊介绍:
Electronic Notes in Discrete Mathematics is a venue for the rapid electronic publication of the proceedings of conferences, of lecture notes, monographs and other similar material for which quick publication is appropriate. Organizers of conferences whose proceedings appear in Electronic Notes in Discrete Mathematics, and authors of other material appearing as a volume in the series are allowed to make hard copies of the relevant volume for limited distribution. For example, conference proceedings may be distributed to participants at the meeting, and lecture notes can be distributed to those taking a course based on the material in the volume.