基于快速静态粒子群优化的人脸特征选择

Fan Lei, Yao Lu, Wei Huang, Lujun Yu, Lin-Na Jia
{"title":"基于快速静态粒子群优化的人脸特征选择","authors":"Fan Lei, Yao Lu, Wei Huang, Lujun Yu, Lin-Na Jia","doi":"10.1109/CIS.2012.96","DOIUrl":null,"url":null,"abstract":"Feature selection only using wrapper method in high-dimensional data space is always time-consuming. A new feature selection method, named fast static particle swarm optimization, is proposed for tackling this problem. It treats the whole initial feature set as a static particle swarm in which no new particle would be generated in high dimensional space, and the proposed method takes filter and wrapper strategy to pick out the most discriminative feature particle subset. Compared with the existing methods, experimental results show that the proposed method is faster than the existing methods in frontal face detection, and the detection error rate is lower than them on average.","PeriodicalId":294394,"journal":{"name":"2012 Eighth International Conference on Computational Intelligence and Security","volume":"32 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-11-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Fast Static Particle Swarm Optimization Based Feature Selection for Face Detection\",\"authors\":\"Fan Lei, Yao Lu, Wei Huang, Lujun Yu, Lin-Na Jia\",\"doi\":\"10.1109/CIS.2012.96\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Feature selection only using wrapper method in high-dimensional data space is always time-consuming. A new feature selection method, named fast static particle swarm optimization, is proposed for tackling this problem. It treats the whole initial feature set as a static particle swarm in which no new particle would be generated in high dimensional space, and the proposed method takes filter and wrapper strategy to pick out the most discriminative feature particle subset. Compared with the existing methods, experimental results show that the proposed method is faster than the existing methods in frontal face detection, and the detection error rate is lower than them on average.\",\"PeriodicalId\":294394,\"journal\":{\"name\":\"2012 Eighth International Conference on Computational Intelligence and Security\",\"volume\":\"32 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-11-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 Eighth International Conference on Computational Intelligence and Security\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CIS.2012.96\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 Eighth International Conference on Computational Intelligence and Security","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CIS.2012.96","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

在高维数据空间中,仅使用包装器方法进行特征选择非常耗时。针对这一问题,提出了一种新的特征选择方法——快速静态粒子群优化算法。该方法将整个初始特征集视为一个静态的粒子群,在高维空间中不会产生新的粒子,并采用滤波和包装策略挑选出最具判别性的特征粒子子集。实验结果表明,该方法在正面人脸检测中速度快于现有方法,且检测错误率平均低于现有方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Fast Static Particle Swarm Optimization Based Feature Selection for Face Detection
Feature selection only using wrapper method in high-dimensional data space is always time-consuming. A new feature selection method, named fast static particle swarm optimization, is proposed for tackling this problem. It treats the whole initial feature set as a static particle swarm in which no new particle would be generated in high dimensional space, and the proposed method takes filter and wrapper strategy to pick out the most discriminative feature particle subset. Compared with the existing methods, experimental results show that the proposed method is faster than the existing methods in frontal face detection, and the detection error rate is lower than them on average.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信