基于神经网络的自适应实时道路检测

Mike Foedisch, Aya Takeuchi
{"title":"基于神经网络的自适应实时道路检测","authors":"Mike Foedisch, Aya Takeuchi","doi":"10.1109/ITSC.2004.1398891","DOIUrl":null,"url":null,"abstract":"We have developed an adaptive real-time road detection application based on neural networks for autonomous driving. By taking advantage of the unique structure in road images, the network training can be processed while the system is running. The algorithm employs color features derived from color histograms. We have focused on the automatic adaptation of the system, which has reduced manual road annotations by human.","PeriodicalId":239269,"journal":{"name":"Proceedings. The 7th International IEEE Conference on Intelligent Transportation Systems (IEEE Cat. No.04TH8749)","volume":"26 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2004-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"65","resultStr":"{\"title\":\"Adaptive real-time road detection using neural networks\",\"authors\":\"Mike Foedisch, Aya Takeuchi\",\"doi\":\"10.1109/ITSC.2004.1398891\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We have developed an adaptive real-time road detection application based on neural networks for autonomous driving. By taking advantage of the unique structure in road images, the network training can be processed while the system is running. The algorithm employs color features derived from color histograms. We have focused on the automatic adaptation of the system, which has reduced manual road annotations by human.\",\"PeriodicalId\":239269,\"journal\":{\"name\":\"Proceedings. The 7th International IEEE Conference on Intelligent Transportation Systems (IEEE Cat. No.04TH8749)\",\"volume\":\"26 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2004-10-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"65\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings. The 7th International IEEE Conference on Intelligent Transportation Systems (IEEE Cat. No.04TH8749)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ITSC.2004.1398891\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings. The 7th International IEEE Conference on Intelligent Transportation Systems (IEEE Cat. No.04TH8749)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ITSC.2004.1398891","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 65

摘要

我们开发了一种基于神经网络的自适应实时道路检测应用,用于自动驾驶。利用道路图像的独特结构,可以在系统运行的同时进行网络训练。该算法采用了从颜色直方图中提取的颜色特征。我们着重于系统的自动适应,减少了人工道路标注。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Adaptive real-time road detection using neural networks
We have developed an adaptive real-time road detection application based on neural networks for autonomous driving. By taking advantage of the unique structure in road images, the network training can be processed while the system is running. The algorithm employs color features derived from color histograms. We have focused on the automatic adaptation of the system, which has reduced manual road annotations by human.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信