{"title":"考虑变量影响的孟加拉拉杰沙希市电力需求预测模型选择","authors":"Md. Rasel Sarkar, Lafifa Margia Orpa, Rifat Afroz Orpe","doi":"10.38032/jea.2023.03.002","DOIUrl":null,"url":null,"abstract":"The purpose of this study is to forecast electricity demand by using the best-selected method which untangles all the factors that affect electricity demand. Three different methods traditional methods (Multiple Regression Model), modified-traditional methods (ARMA), and soft computing method (Fuzzy Linear Regression Model) are selected for prediction. Environmental parameters like temperature, humidity, and wind speed are included as variables as Rajshahi has very impactful weather. The impact of each variable was calculated from their standardized values to know the effect of environmental parameters. The accuracy of the three forecasting models is compared by different statistical measures of errors. Using Mean Absolute Percentage Error (MAPE), the errors of the Multiple Regression Model, ARMA, and Fuzzy Linear Regression (FLR) Model are 6.85%, 22.24%, and 4.45%. The other three measures of error also give the FLR gives the best results. Finally, the electricity demand of Rajshahi City for the next five years is forecasted using the Fuzzy Linear Regression Model.","PeriodicalId":292407,"journal":{"name":"Journal of Engineering Advancements","volume":"12 11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-08-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Forecasting Model Selection with Variables Impact to Predict Electricity Demand at Rajshahi City of Bangladesh\",\"authors\":\"Md. Rasel Sarkar, Lafifa Margia Orpa, Rifat Afroz Orpe\",\"doi\":\"10.38032/jea.2023.03.002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The purpose of this study is to forecast electricity demand by using the best-selected method which untangles all the factors that affect electricity demand. Three different methods traditional methods (Multiple Regression Model), modified-traditional methods (ARMA), and soft computing method (Fuzzy Linear Regression Model) are selected for prediction. Environmental parameters like temperature, humidity, and wind speed are included as variables as Rajshahi has very impactful weather. The impact of each variable was calculated from their standardized values to know the effect of environmental parameters. The accuracy of the three forecasting models is compared by different statistical measures of errors. Using Mean Absolute Percentage Error (MAPE), the errors of the Multiple Regression Model, ARMA, and Fuzzy Linear Regression (FLR) Model are 6.85%, 22.24%, and 4.45%. The other three measures of error also give the FLR gives the best results. Finally, the electricity demand of Rajshahi City for the next five years is forecasted using the Fuzzy Linear Regression Model.\",\"PeriodicalId\":292407,\"journal\":{\"name\":\"Journal of Engineering Advancements\",\"volume\":\"12 11 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-08-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Engineering Advancements\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.38032/jea.2023.03.002\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Engineering Advancements","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.38032/jea.2023.03.002","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Forecasting Model Selection with Variables Impact to Predict Electricity Demand at Rajshahi City of Bangladesh
The purpose of this study is to forecast electricity demand by using the best-selected method which untangles all the factors that affect electricity demand. Three different methods traditional methods (Multiple Regression Model), modified-traditional methods (ARMA), and soft computing method (Fuzzy Linear Regression Model) are selected for prediction. Environmental parameters like temperature, humidity, and wind speed are included as variables as Rajshahi has very impactful weather. The impact of each variable was calculated from their standardized values to know the effect of environmental parameters. The accuracy of the three forecasting models is compared by different statistical measures of errors. Using Mean Absolute Percentage Error (MAPE), the errors of the Multiple Regression Model, ARMA, and Fuzzy Linear Regression (FLR) Model are 6.85%, 22.24%, and 4.45%. The other three measures of error also give the FLR gives the best results. Finally, the electricity demand of Rajshahi City for the next five years is forecasted using the Fuzzy Linear Regression Model.