CMAC-GBF与支持向量回归技术的集成

Chen-Chia Chuang, Chia-Chu Hsu, Jin-Tsong Jeng
{"title":"CMAC-GBF与支持向量回归技术的集成","authors":"Chen-Chia Chuang, Chia-Chu Hsu, Jin-Tsong Jeng","doi":"10.1109/FUZZY.2007.4295426","DOIUrl":null,"url":null,"abstract":"In this paper, we integrate the techniques of cerebellar model articulation controller with general basis function (CMAC-GBF) and support vector regression (SVR) to develop a more efficient scheme. The advantages of CMAC-GBF include: fast learning speed, guarantee learning convergence, capability of derivative, etc. On the other hand, a SVR is a novel method for tackling the problems of function approximation and regression estimation based on the statistical learning theory and has robust properties that against noise. In this paper, we propose the SVR-based CMAC-GBF systems that combined SVR with CMAC-GBF systems. From the results of simulation, the proposed structure has high accuracy and noise against. Besides, the experimental testing results demonstrate that the SVR-based CMAC-GBF systems outperform the original CMAC-GBF systems.","PeriodicalId":236515,"journal":{"name":"2007 IEEE International Fuzzy Systems Conference","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Integration of CMAC-GBF and Support Vector Regression Techniques\",\"authors\":\"Chen-Chia Chuang, Chia-Chu Hsu, Jin-Tsong Jeng\",\"doi\":\"10.1109/FUZZY.2007.4295426\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we integrate the techniques of cerebellar model articulation controller with general basis function (CMAC-GBF) and support vector regression (SVR) to develop a more efficient scheme. The advantages of CMAC-GBF include: fast learning speed, guarantee learning convergence, capability of derivative, etc. On the other hand, a SVR is a novel method for tackling the problems of function approximation and regression estimation based on the statistical learning theory and has robust properties that against noise. In this paper, we propose the SVR-based CMAC-GBF systems that combined SVR with CMAC-GBF systems. From the results of simulation, the proposed structure has high accuracy and noise against. Besides, the experimental testing results demonstrate that the SVR-based CMAC-GBF systems outperform the original CMAC-GBF systems.\",\"PeriodicalId\":236515,\"journal\":{\"name\":\"2007 IEEE International Fuzzy Systems Conference\",\"volume\":\"6 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-07-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2007 IEEE International Fuzzy Systems Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/FUZZY.2007.4295426\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 IEEE International Fuzzy Systems Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FUZZY.2007.4295426","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

本文将小脑模型关节控制器与通用基函数(CMAC-GBF)和支持向量回归(SVR)技术相结合,提出了一种更有效的控制方案。CMAC-GBF的优点包括:学习速度快、学习收敛性强、导数能力强等。另一方面,SVR是一种基于统计学习理论解决函数逼近和回归估计问题的新方法,具有抗噪声的鲁棒性。本文提出了基于SVR和CMAC-GBF相结合的基于SVR的CMAC-GBF系统。仿真结果表明,该结构具有较高的精度和抗噪性。此外,实验测试结果表明,基于svr的CMAC-GBF系统优于原有的CMAC-GBF系统。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Integration of CMAC-GBF and Support Vector Regression Techniques
In this paper, we integrate the techniques of cerebellar model articulation controller with general basis function (CMAC-GBF) and support vector regression (SVR) to develop a more efficient scheme. The advantages of CMAC-GBF include: fast learning speed, guarantee learning convergence, capability of derivative, etc. On the other hand, a SVR is a novel method for tackling the problems of function approximation and regression estimation based on the statistical learning theory and has robust properties that against noise. In this paper, we propose the SVR-based CMAC-GBF systems that combined SVR with CMAC-GBF systems. From the results of simulation, the proposed structure has high accuracy and noise against. Besides, the experimental testing results demonstrate that the SVR-based CMAC-GBF systems outperform the original CMAC-GBF systems.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信