{"title":"利用智能技术评估预测平均投票的模型开发与分析","authors":"L. Sansyzbay, B. Orazbayev, W. Wójcik","doi":"10.5391/ijfis.2020.20.4.324","DOIUrl":null,"url":null,"abstract":"One of the approaches toward determining the degree of microclimate comfort is measuring its individual components: temperature, air velocity, relative humidity, and air quality. A significant disadvantage of this approach is the neglect of the mutual influence of microclimate parameters on each other. To improve the accuracy of determining microclimate comfort, it is necessary to use a complex predicted mean vote (PMV) indicator. The PMV equation is complex and computationally consuming; simplified solutions can be obtained using Fanger’s diagrams, Excel calculation programs, and specialized computer applications. With the development of technology, intelligent microclimate systems are gaining popularity. In this article, for selecting one of the most effective intelligent technologies, models have been developed for assessing the PMV indicator using the frameworks of fuzzy logic and neural networks. The data obtained using the calculation program of the researchers of the Federal State Unitary Enterprise Research Institute (Russia) were used as input parameters for the models’ development. The program’s performance was validated against the PMV parameter values in the ISO 7730:2005 standard, and a good agreement was found. The PMV index values produced by the considered models were compared to the values calculated using the program, to determine the operability and efficiency of the developed models. Our analysis suggests that neural networks perform better on the assessment of thermal comfort, compared with fuzzy systems.","PeriodicalId":354250,"journal":{"name":"Int. J. Fuzzy Log. Intell. Syst.","volume":"354 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Development and Analysis of Models for Assessing Predicted Mean Vote Using Intelligent Technologies\",\"authors\":\"L. Sansyzbay, B. Orazbayev, W. Wójcik\",\"doi\":\"10.5391/ijfis.2020.20.4.324\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"One of the approaches toward determining the degree of microclimate comfort is measuring its individual components: temperature, air velocity, relative humidity, and air quality. A significant disadvantage of this approach is the neglect of the mutual influence of microclimate parameters on each other. To improve the accuracy of determining microclimate comfort, it is necessary to use a complex predicted mean vote (PMV) indicator. The PMV equation is complex and computationally consuming; simplified solutions can be obtained using Fanger’s diagrams, Excel calculation programs, and specialized computer applications. With the development of technology, intelligent microclimate systems are gaining popularity. In this article, for selecting one of the most effective intelligent technologies, models have been developed for assessing the PMV indicator using the frameworks of fuzzy logic and neural networks. The data obtained using the calculation program of the researchers of the Federal State Unitary Enterprise Research Institute (Russia) were used as input parameters for the models’ development. The program’s performance was validated against the PMV parameter values in the ISO 7730:2005 standard, and a good agreement was found. The PMV index values produced by the considered models were compared to the values calculated using the program, to determine the operability and efficiency of the developed models. Our analysis suggests that neural networks perform better on the assessment of thermal comfort, compared with fuzzy systems.\",\"PeriodicalId\":354250,\"journal\":{\"name\":\"Int. J. Fuzzy Log. Intell. Syst.\",\"volume\":\"354 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-12-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Int. J. Fuzzy Log. Intell. Syst.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5391/ijfis.2020.20.4.324\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Fuzzy Log. Intell. Syst.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5391/ijfis.2020.20.4.324","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Development and Analysis of Models for Assessing Predicted Mean Vote Using Intelligent Technologies
One of the approaches toward determining the degree of microclimate comfort is measuring its individual components: temperature, air velocity, relative humidity, and air quality. A significant disadvantage of this approach is the neglect of the mutual influence of microclimate parameters on each other. To improve the accuracy of determining microclimate comfort, it is necessary to use a complex predicted mean vote (PMV) indicator. The PMV equation is complex and computationally consuming; simplified solutions can be obtained using Fanger’s diagrams, Excel calculation programs, and specialized computer applications. With the development of technology, intelligent microclimate systems are gaining popularity. In this article, for selecting one of the most effective intelligent technologies, models have been developed for assessing the PMV indicator using the frameworks of fuzzy logic and neural networks. The data obtained using the calculation program of the researchers of the Federal State Unitary Enterprise Research Institute (Russia) were used as input parameters for the models’ development. The program’s performance was validated against the PMV parameter values in the ISO 7730:2005 standard, and a good agreement was found. The PMV index values produced by the considered models were compared to the values calculated using the program, to determine the operability and efficiency of the developed models. Our analysis suggests that neural networks perform better on the assessment of thermal comfort, compared with fuzzy systems.