{"title":"连续反向k近邻监测","authors":"Wei Wu, Fei Yang, C. Chan, K. Tan","doi":"10.1109/MDM.2008.31","DOIUrl":null,"url":null,"abstract":"The processing of a Continuous Reverse k-Nearest-Neighbor (CRkNN) query on moving objects can be divided into two sub tasks: continuous filter, and continuous refinement. The algorithms for the two tasks can be completely independent. Existing CRkNN solutions employ Continuous k-Nearest-Neighbor (CkNN) queries for both continuous filter and continuous refinement. We analyze the CkNN based solution and point out that when k > 1 the refinement cost becomes the system bottleneck. We propose a new continuous refinement method called CRange-k. In CRange- k, we transform the continuous verification problem into a Continuous Range-k query, which is also defined in this paper, and process it efficiently. Experimental study shows that the CRkNN solution based on our CRange-k refinement method is more efficient and scalable than the state-of-the- art CRkNN solution.","PeriodicalId":365750,"journal":{"name":"The Ninth International Conference on Mobile Data Management (mdm 2008)","volume":"57 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"58","resultStr":"{\"title\":\"Continuous Reverse k-Nearest-Neighbor Monitoring\",\"authors\":\"Wei Wu, Fei Yang, C. Chan, K. Tan\",\"doi\":\"10.1109/MDM.2008.31\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The processing of a Continuous Reverse k-Nearest-Neighbor (CRkNN) query on moving objects can be divided into two sub tasks: continuous filter, and continuous refinement. The algorithms for the two tasks can be completely independent. Existing CRkNN solutions employ Continuous k-Nearest-Neighbor (CkNN) queries for both continuous filter and continuous refinement. We analyze the CkNN based solution and point out that when k > 1 the refinement cost becomes the system bottleneck. We propose a new continuous refinement method called CRange-k. In CRange- k, we transform the continuous verification problem into a Continuous Range-k query, which is also defined in this paper, and process it efficiently. Experimental study shows that the CRkNN solution based on our CRange-k refinement method is more efficient and scalable than the state-of-the- art CRkNN solution.\",\"PeriodicalId\":365750,\"journal\":{\"name\":\"The Ninth International Conference on Mobile Data Management (mdm 2008)\",\"volume\":\"57 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"58\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Ninth International Conference on Mobile Data Management (mdm 2008)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MDM.2008.31\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Ninth International Conference on Mobile Data Management (mdm 2008)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MDM.2008.31","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
The processing of a Continuous Reverse k-Nearest-Neighbor (CRkNN) query on moving objects can be divided into two sub tasks: continuous filter, and continuous refinement. The algorithms for the two tasks can be completely independent. Existing CRkNN solutions employ Continuous k-Nearest-Neighbor (CkNN) queries for both continuous filter and continuous refinement. We analyze the CkNN based solution and point out that when k > 1 the refinement cost becomes the system bottleneck. We propose a new continuous refinement method called CRange-k. In CRange- k, we transform the continuous verification problem into a Continuous Range-k query, which is also defined in this paper, and process it efficiently. Experimental study shows that the CRkNN solution based on our CRange-k refinement method is more efficient and scalable than the state-of-the- art CRkNN solution.