{"title":"基于混沌遗传算法的q -学习在不确定性迷宫基准中的应用","authors":"Mostafa Rafiei, M. Sina","doi":"10.1109/ICCSA.2015.27","DOIUrl":null,"url":null,"abstract":"In many Multi Agent Systems, under-education agents investigate their environments to discover their target(s). Any agent can also learn its strategy. In multitask learning, one agent studies a set of related problems together simultaneously, by a common model. In reinforcement learning exploration phase, it is necessary to introduce a process of trial and error to learn better rewards obtained from environment. To reach this end, anyone can typically employ the uniform pseudorandom number generator in exploration period. On the other hand, it is predictable that chaotic sources also offer a random-like series comparable to stochastic ones. It is useful in multitask reinforcement learning, to use teammate agents' experience by doing simple interactions between each other. We employ the past experiences of agents to enhance performance of multitask learning in a nondeterministic environment. Communications are created by operators of evolutionary algorithm. In this paper we have also employed the chaotic generator in the exploration phase of reinforcement learning in a nondeterministic maze problem. We obtained interesting results in the maze problem.","PeriodicalId":197153,"journal":{"name":"2015 15th International Conference on Computational Science and Its Applications","volume":"21 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-06-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Choatic GA Based Q-Learning in Nondeterministic Maze Benchmark\",\"authors\":\"Mostafa Rafiei, M. Sina\",\"doi\":\"10.1109/ICCSA.2015.27\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In many Multi Agent Systems, under-education agents investigate their environments to discover their target(s). Any agent can also learn its strategy. In multitask learning, one agent studies a set of related problems together simultaneously, by a common model. In reinforcement learning exploration phase, it is necessary to introduce a process of trial and error to learn better rewards obtained from environment. To reach this end, anyone can typically employ the uniform pseudorandom number generator in exploration period. On the other hand, it is predictable that chaotic sources also offer a random-like series comparable to stochastic ones. It is useful in multitask reinforcement learning, to use teammate agents' experience by doing simple interactions between each other. We employ the past experiences of agents to enhance performance of multitask learning in a nondeterministic environment. Communications are created by operators of evolutionary algorithm. In this paper we have also employed the chaotic generator in the exploration phase of reinforcement learning in a nondeterministic maze problem. We obtained interesting results in the maze problem.\",\"PeriodicalId\":197153,\"journal\":{\"name\":\"2015 15th International Conference on Computational Science and Its Applications\",\"volume\":\"21 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-06-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 15th International Conference on Computational Science and Its Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCSA.2015.27\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 15th International Conference on Computational Science and Its Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCSA.2015.27","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Choatic GA Based Q-Learning in Nondeterministic Maze Benchmark
In many Multi Agent Systems, under-education agents investigate their environments to discover their target(s). Any agent can also learn its strategy. In multitask learning, one agent studies a set of related problems together simultaneously, by a common model. In reinforcement learning exploration phase, it is necessary to introduce a process of trial and error to learn better rewards obtained from environment. To reach this end, anyone can typically employ the uniform pseudorandom number generator in exploration period. On the other hand, it is predictable that chaotic sources also offer a random-like series comparable to stochastic ones. It is useful in multitask reinforcement learning, to use teammate agents' experience by doing simple interactions between each other. We employ the past experiences of agents to enhance performance of multitask learning in a nondeterministic environment. Communications are created by operators of evolutionary algorithm. In this paper we have also employed the chaotic generator in the exploration phase of reinforcement learning in a nondeterministic maze problem. We obtained interesting results in the maze problem.