微阵列数据聚类分析研究进展

Qizheng Sheng, Y. Moreau, F. Smet, K. Marchal, B. Moor
{"title":"微阵列数据聚类分析研究进展","authors":"Qizheng Sheng, Y. Moreau, F. Smet, K. Marchal, B. Moor","doi":"10.1002/0470094419.CH10","DOIUrl":null,"url":null,"abstract":"Clustering genes into biological meaningful groups according to their pattern of expression is a main technique of microarray data analysis, based on the assumption that similarity in gene expression implies some form of regulatory or functional similarity. We give an overview of various clustering techniques, including conventional clustering methods (such as hierarchical clustering, k-means clustering, and self-organizing maps), as well as several clustering methods specifically developed for gene expression analysis.","PeriodicalId":268206,"journal":{"name":"Data Analysis and Visualization in Genomics and Proteomics","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2005-06-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":"{\"title\":\"Advances in Cluster Analysis of Microarray Data\",\"authors\":\"Qizheng Sheng, Y. Moreau, F. Smet, K. Marchal, B. Moor\",\"doi\":\"10.1002/0470094419.CH10\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Clustering genes into biological meaningful groups according to their pattern of expression is a main technique of microarray data analysis, based on the assumption that similarity in gene expression implies some form of regulatory or functional similarity. We give an overview of various clustering techniques, including conventional clustering methods (such as hierarchical clustering, k-means clustering, and self-organizing maps), as well as several clustering methods specifically developed for gene expression analysis.\",\"PeriodicalId\":268206,\"journal\":{\"name\":\"Data Analysis and Visualization in Genomics and Proteomics\",\"volume\":\"17 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2005-06-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"15\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Data Analysis and Visualization in Genomics and Proteomics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1002/0470094419.CH10\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Data Analysis and Visualization in Genomics and Proteomics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/0470094419.CH10","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 15

摘要

基于基因表达的相似性意味着某种形式的调控或功能相似性的假设,将基因根据其表达模式聚类成具有生物学意义的群体是微阵列数据分析的主要技术。我们概述了各种聚类技术,包括传统的聚类方法(如层次聚类、k-means聚类和自组织图),以及专门为基因表达分析开发的几种聚类方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Advances in Cluster Analysis of Microarray Data
Clustering genes into biological meaningful groups according to their pattern of expression is a main technique of microarray data analysis, based on the assumption that similarity in gene expression implies some form of regulatory or functional similarity. We give an overview of various clustering techniques, including conventional clustering methods (such as hierarchical clustering, k-means clustering, and self-organizing maps), as well as several clustering methods specifically developed for gene expression analysis.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信