用Hamiltonian MCMC鲁棒T2弛豫法估计髓磷脂水分数

Thomas Yu, M. Pizzolato, Erick Jorge Canales-Rodríguez, J. Thiran
{"title":"用Hamiltonian MCMC鲁棒T2弛豫法估计髓磷脂水分数","authors":"Thomas Yu, M. Pizzolato, Erick Jorge Canales-Rodríguez, J. Thiran","doi":"10.1109/ISBI.2019.8759446","DOIUrl":null,"url":null,"abstract":"We present a voxel-wise Bayesian multi-compartment $T_{2}$ relaxometry fitting method based on Hamiltonian Markov Chain Monte Carlo (HMCMC) sampling. The $T_{2}$ spectrum is modeled as a mixture of truncated Gaussian components, which involves the estimation of parameters in a completely data-driven and voxel-based fashion, i.e. without fixing any parameters or imposing spatial regularization. We estimate each parameter as the expectation of the corresponding marginal distribution drawn from the joint posterior obtained with Hamiltonian sampling. We validate our scheme on synthetic and ex vivo data for which histology is available. We show that the proposed method enables a more robust parameter estimation than a state of the art point estimate based on differential evolution. Moreover, the proposed HMCMC-based myelin water fraction calculation reveals high spatial correlation with the histological counterpart.","PeriodicalId":119935,"journal":{"name":"2019 IEEE 16th International Symposium on Biomedical Imaging (ISBI 2019)","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Robust T2 Relaxometry With Hamiltonian MCMC for Myelin Water Fraction Estimation\",\"authors\":\"Thomas Yu, M. Pizzolato, Erick Jorge Canales-Rodríguez, J. Thiran\",\"doi\":\"10.1109/ISBI.2019.8759446\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present a voxel-wise Bayesian multi-compartment $T_{2}$ relaxometry fitting method based on Hamiltonian Markov Chain Monte Carlo (HMCMC) sampling. The $T_{2}$ spectrum is modeled as a mixture of truncated Gaussian components, which involves the estimation of parameters in a completely data-driven and voxel-based fashion, i.e. without fixing any parameters or imposing spatial regularization. We estimate each parameter as the expectation of the corresponding marginal distribution drawn from the joint posterior obtained with Hamiltonian sampling. We validate our scheme on synthetic and ex vivo data for which histology is available. We show that the proposed method enables a more robust parameter estimation than a state of the art point estimate based on differential evolution. Moreover, the proposed HMCMC-based myelin water fraction calculation reveals high spatial correlation with the histological counterpart.\",\"PeriodicalId\":119935,\"journal\":{\"name\":\"2019 IEEE 16th International Symposium on Biomedical Imaging (ISBI 2019)\",\"volume\":\"14 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-04-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE 16th International Symposium on Biomedical Imaging (ISBI 2019)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISBI.2019.8759446\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE 16th International Symposium on Biomedical Imaging (ISBI 2019)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISBI.2019.8759446","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

提出了一种基于哈密顿马尔可夫链蒙特卡罗(HMCMC)采样的体素贝叶斯多室$T_{2}$松弛拟合方法。$T_{2}$光谱被建模为截断的高斯分量的混合物,它涉及以完全数据驱动和基于体素的方式估计参数,即不固定任何参数或强加空间正则化。我们用哈密顿抽样得到的关节后验得到的相应的边际分布的期望来估计每个参数。我们在合成和离体数据上验证了我们的方案,其中组织学是可用的。我们表明,所提出的方法能够比基于差分进化的最先进的点估计更鲁棒的参数估计。此外,提出的基于hmcmc的髓磷脂水分数计算显示与组织学对应物具有高度的空间相关性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Robust T2 Relaxometry With Hamiltonian MCMC for Myelin Water Fraction Estimation
We present a voxel-wise Bayesian multi-compartment $T_{2}$ relaxometry fitting method based on Hamiltonian Markov Chain Monte Carlo (HMCMC) sampling. The $T_{2}$ spectrum is modeled as a mixture of truncated Gaussian components, which involves the estimation of parameters in a completely data-driven and voxel-based fashion, i.e. without fixing any parameters or imposing spatial regularization. We estimate each parameter as the expectation of the corresponding marginal distribution drawn from the joint posterior obtained with Hamiltonian sampling. We validate our scheme on synthetic and ex vivo data for which histology is available. We show that the proposed method enables a more robust parameter estimation than a state of the art point estimate based on differential evolution. Moreover, the proposed HMCMC-based myelin water fraction calculation reveals high spatial correlation with the histological counterpart.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信