广义群的辛狄拉克上同调及特征的提升

Jing Huang
{"title":"广义群的辛狄拉克上同调及特征的提升","authors":"Jing Huang","doi":"10.1090/CONM/768/15452","DOIUrl":null,"url":null,"abstract":"We formulate the transfer factor of character lifting from orthogonal groups to symplectic groups by Adams in the framework of symplectic Dirac cohomology for the Lie superalgebras and the Rittenberg-Scheunert correspondence of representations of the Lie superalgebra $\\fro\\frsp(1|2n)$ and the Lie algebra $\\fro(2n+1)$. This leads to formulation of a direct lifting of characters from the linear symplectic group $Sp(2n,\\bbR)$ to its nonlinear covering metaplectic group $Mp(2n,\\bbR)$.","PeriodicalId":275006,"journal":{"name":"arXiv: Representation Theory","volume":"19 1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Symplectic Dirac cohomology and lifting of\\n characters to metaplectic groups\",\"authors\":\"Jing Huang\",\"doi\":\"10.1090/CONM/768/15452\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We formulate the transfer factor of character lifting from orthogonal groups to symplectic groups by Adams in the framework of symplectic Dirac cohomology for the Lie superalgebras and the Rittenberg-Scheunert correspondence of representations of the Lie superalgebra $\\\\fro\\\\frsp(1|2n)$ and the Lie algebra $\\\\fro(2n+1)$. This leads to formulation of a direct lifting of characters from the linear symplectic group $Sp(2n,\\\\bbR)$ to its nonlinear covering metaplectic group $Mp(2n,\\\\bbR)$.\",\"PeriodicalId\":275006,\"journal\":{\"name\":\"arXiv: Representation Theory\",\"volume\":\"19 1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-05-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: Representation Theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1090/CONM/768/15452\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Representation Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1090/CONM/768/15452","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

在李超代数的辛狄拉克上同调的框架下,用Adams给出了李超代数$\fro\frsp(1|2n)$和李代数$\fro(2n+1)$表示的Rittenberg-Scheunert对应关系,给出了从正交群到辛群的特征提升的传递因子。这导致了从线性辛群$Sp(2n,\bbR)$到它的非线性覆盖元群$Mp(2n,\bbR)$的直接提升特征的表述。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Symplectic Dirac cohomology and lifting of characters to metaplectic groups
We formulate the transfer factor of character lifting from orthogonal groups to symplectic groups by Adams in the framework of symplectic Dirac cohomology for the Lie superalgebras and the Rittenberg-Scheunert correspondence of representations of the Lie superalgebra $\fro\frsp(1|2n)$ and the Lie algebra $\fro(2n+1)$. This leads to formulation of a direct lifting of characters from the linear symplectic group $Sp(2n,\bbR)$ to its nonlinear covering metaplectic group $Mp(2n,\bbR)$.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信