用于快速调谐的自举参数空间探索

Jayaraman J. Thiagarajan, Nikhil Jain, Rushil Anirudh, Alfredo Giménez, R. Sridhar, Aniruddha Marathe, Tao Wang, M. Emani, A. Bhatele, T. Gamblin
{"title":"用于快速调谐的自举参数空间探索","authors":"Jayaraman J. Thiagarajan, Nikhil Jain, Rushil Anirudh, Alfredo Giménez, R. Sridhar, Aniruddha Marathe, Tao Wang, M. Emani, A. Bhatele, T. Gamblin","doi":"10.1145/3205289.3205321","DOIUrl":null,"url":null,"abstract":"The task of tuning parameters for optimizing performance or other metrics of interest such as energy, variability, etc. can be resource and time consuming. Presence of a large parameter space makes a comprehensive exploration infeasible. In this paper, we propose a novel bootstrap scheme, called GEIST, for parameter space exploration to find performance-optimizing configurations quickly. Our scheme represents the parameter space as a graph whose connectivity guides information propagation from known configurations. Guided by the predictions of a semi-supervised learning method over the parameter graph, GEIST is able to adaptively sample and find desirable configurations using limited results from experiments. We show the effectiveness of GEIST for selecting application input options, compiler flags, and runtime/system settings for several parallel codes including LULESH, Kripke, Hypre, and OpenAtom.","PeriodicalId":441217,"journal":{"name":"Proceedings of the 2018 International Conference on Supercomputing","volume":"47 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"24","resultStr":"{\"title\":\"Bootstrapping Parameter Space Exploration for Fast Tuning\",\"authors\":\"Jayaraman J. Thiagarajan, Nikhil Jain, Rushil Anirudh, Alfredo Giménez, R. Sridhar, Aniruddha Marathe, Tao Wang, M. Emani, A. Bhatele, T. Gamblin\",\"doi\":\"10.1145/3205289.3205321\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The task of tuning parameters for optimizing performance or other metrics of interest such as energy, variability, etc. can be resource and time consuming. Presence of a large parameter space makes a comprehensive exploration infeasible. In this paper, we propose a novel bootstrap scheme, called GEIST, for parameter space exploration to find performance-optimizing configurations quickly. Our scheme represents the parameter space as a graph whose connectivity guides information propagation from known configurations. Guided by the predictions of a semi-supervised learning method over the parameter graph, GEIST is able to adaptively sample and find desirable configurations using limited results from experiments. We show the effectiveness of GEIST for selecting application input options, compiler flags, and runtime/system settings for several parallel codes including LULESH, Kripke, Hypre, and OpenAtom.\",\"PeriodicalId\":441217,\"journal\":{\"name\":\"Proceedings of the 2018 International Conference on Supercomputing\",\"volume\":\"47 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-06-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"24\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2018 International Conference on Supercomputing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3205289.3205321\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2018 International Conference on Supercomputing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3205289.3205321","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 24

摘要

为优化性能或其他感兴趣的指标(如能量、可变性等)而调优参数的任务可能会耗费资源和时间。由于存在较大的参数空间,使得综合勘探不可行。在本文中,我们提出了一种新的自举方案,称为GEIST,用于参数空间探索,以快速找到性能优化配置。我们的方案将参数空间表示为一个图,其连通性指导信息从已知配置传播。在参数图上的半监督学习方法预测的指导下,GEIST能够自适应采样并使用有限的实验结果找到理想的配置。我们展示了GEIST在为多个并行代码(包括LULESH, Kripke, Hypre和OpenAtom)选择应用程序输入选项,编译器标志和运行时/系统设置方面的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Bootstrapping Parameter Space Exploration for Fast Tuning
The task of tuning parameters for optimizing performance or other metrics of interest such as energy, variability, etc. can be resource and time consuming. Presence of a large parameter space makes a comprehensive exploration infeasible. In this paper, we propose a novel bootstrap scheme, called GEIST, for parameter space exploration to find performance-optimizing configurations quickly. Our scheme represents the parameter space as a graph whose connectivity guides information propagation from known configurations. Guided by the predictions of a semi-supervised learning method over the parameter graph, GEIST is able to adaptively sample and find desirable configurations using limited results from experiments. We show the effectiveness of GEIST for selecting application input options, compiler flags, and runtime/system settings for several parallel codes including LULESH, Kripke, Hypre, and OpenAtom.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信