推广共轭Lindley效用函数估计多参数分布参数

Mohammed Shamsuldean Thanon, Raya Salim Al Rassam
{"title":"推广共轭Lindley效用函数估计多参数分布参数","authors":"Mohammed Shamsuldean Thanon, Raya Salim Al Rassam","doi":"10.1109/ICCITM53167.2021.9677657","DOIUrl":null,"url":null,"abstract":"Bayesian method is one of many methods inrroduced for estimating the parameters of the probability distributions, In this method the parameters of the distributions considered as random variables and has a probability distribution unlike other estimation methods. When estimating by the Bayesian method, the estimation is either directly or by using loss functions or using utility functions. The issue, however gets complicated as the number of estimated parameters increases, which makes the estimation process numerical because it is difficult to obtain analytical formulas. In our research, the method of estimating the parameters of the distributions has been generalized using the Lindley conjugate utility function with k parameters and that the parameters estimated in this way make the Lindley conjugate utility function the greatest possiblelity by obtaining the appropriate approximate optimal decisions, as this estimation method was clarified by applying it to the distribution of generalized gamma with three parameters and the estimators were found analytically.","PeriodicalId":406104,"journal":{"name":"2021 7th International Conference on Contemporary Information Technology and Mathematics (ICCITM)","volume":"20 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-08-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Generalizing the Conjugate Lindley's Utility Function to Estimate the Multi Parameter Distributions Parameters\",\"authors\":\"Mohammed Shamsuldean Thanon, Raya Salim Al Rassam\",\"doi\":\"10.1109/ICCITM53167.2021.9677657\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Bayesian method is one of many methods inrroduced for estimating the parameters of the probability distributions, In this method the parameters of the distributions considered as random variables and has a probability distribution unlike other estimation methods. When estimating by the Bayesian method, the estimation is either directly or by using loss functions or using utility functions. The issue, however gets complicated as the number of estimated parameters increases, which makes the estimation process numerical because it is difficult to obtain analytical formulas. In our research, the method of estimating the parameters of the distributions has been generalized using the Lindley conjugate utility function with k parameters and that the parameters estimated in this way make the Lindley conjugate utility function the greatest possiblelity by obtaining the appropriate approximate optimal decisions, as this estimation method was clarified by applying it to the distribution of generalized gamma with three parameters and the estimators were found analytically.\",\"PeriodicalId\":406104,\"journal\":{\"name\":\"2021 7th International Conference on Contemporary Information Technology and Mathematics (ICCITM)\",\"volume\":\"20 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-08-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 7th International Conference on Contemporary Information Technology and Mathematics (ICCITM)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCITM53167.2021.9677657\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 7th International Conference on Contemporary Information Technology and Mathematics (ICCITM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCITM53167.2021.9677657","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

贝叶斯方法是估计概率分布参数的众多方法之一,该方法将分布的参数视为随机变量,与其他估计方法不同,它具有概率分布。用贝叶斯方法进行估计时,要么直接估计,要么利用损失函数或效用函数进行估计。然而,随着估计参数数量的增加,问题变得复杂,这使得估计过程变得数字化,因为很难获得解析公式。在我们的研究中,利用具有k个参数的Lindley共轭效用函数对分布参数的估计方法进行了推广,通过得到适当的近似最优决策,从而使Lindley共轭效用函数成为最大的可能,并将该估计方法应用于具有3个参数的广义伽玛分布进行了阐明,并解析地找到了估计量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Generalizing the Conjugate Lindley's Utility Function to Estimate the Multi Parameter Distributions Parameters
Bayesian method is one of many methods inrroduced for estimating the parameters of the probability distributions, In this method the parameters of the distributions considered as random variables and has a probability distribution unlike other estimation methods. When estimating by the Bayesian method, the estimation is either directly or by using loss functions or using utility functions. The issue, however gets complicated as the number of estimated parameters increases, which makes the estimation process numerical because it is difficult to obtain analytical formulas. In our research, the method of estimating the parameters of the distributions has been generalized using the Lindley conjugate utility function with k parameters and that the parameters estimated in this way make the Lindley conjugate utility function the greatest possiblelity by obtaining the appropriate approximate optimal decisions, as this estimation method was clarified by applying it to the distribution of generalized gamma with three parameters and the estimators were found analytically.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信