Stein和Stein模型反射和三面随机波动模型的大偏差原理

Archil Gulisashvili
{"title":"Stein和Stein模型反射和三面随机波动模型的大偏差原理","authors":"Archil Gulisashvili","doi":"10.2139/ssrn.3757783","DOIUrl":null,"url":null,"abstract":"We introduce stochastic volatility models, in which the volatility is described by a time-dependent nonnegative function of a reflecting diffusion. The idea to use reflecting diffusions as building blocks of the volatility came into being because of a certain volatility misspecification in the classical Stein and Stein model. A version of this model that uses the reflecting Ornstein-Uhlenbeck process as the volatility process is a special example of a stochastic volatility model with reflection. The main results obtained in the present paper are sample path and small-noise large deviation principles for the log-price process in a stochastic volatility model with reflection under rather mild restrictions. We use these results to study the asymptotic behavior of binary barrier options and call prices in the small-noise regime.","PeriodicalId":293888,"journal":{"name":"Econometric Modeling: Derivatives eJournal","volume":"25 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Large Deviation Principles for Stochastic Volatility Models with Reflection and Three Faces of the Stein and Stein Model\",\"authors\":\"Archil Gulisashvili\",\"doi\":\"10.2139/ssrn.3757783\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We introduce stochastic volatility models, in which the volatility is described by a time-dependent nonnegative function of a reflecting diffusion. The idea to use reflecting diffusions as building blocks of the volatility came into being because of a certain volatility misspecification in the classical Stein and Stein model. A version of this model that uses the reflecting Ornstein-Uhlenbeck process as the volatility process is a special example of a stochastic volatility model with reflection. The main results obtained in the present paper are sample path and small-noise large deviation principles for the log-price process in a stochastic volatility model with reflection under rather mild restrictions. We use these results to study the asymptotic behavior of binary barrier options and call prices in the small-noise regime.\",\"PeriodicalId\":293888,\"journal\":{\"name\":\"Econometric Modeling: Derivatives eJournal\",\"volume\":\"25 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-06-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Econometric Modeling: Derivatives eJournal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2139/ssrn.3757783\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Econometric Modeling: Derivatives eJournal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.3757783","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

我们引入随机波动率模型,其中波动率由反射扩散的时间相关非负函数描述。使用反射扩散作为波动率的构建模块的想法是由于经典Stein和Stein模型中存在一定的波动率规格错误而产生的。该模型的一个版本使用反射Ornstein-Uhlenbeck过程作为波动过程,这是具有反射的随机波动模型的一个特殊例子。本文得到的主要结果是在较温和的约束条件下,具有反射的随机波动模型中对数价格过程的样本路径和小噪声大偏差原理。我们利用这些结果研究了二元障碍期权和看涨期权价格在小噪声条件下的渐近行为。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Large Deviation Principles for Stochastic Volatility Models with Reflection and Three Faces of the Stein and Stein Model
We introduce stochastic volatility models, in which the volatility is described by a time-dependent nonnegative function of a reflecting diffusion. The idea to use reflecting diffusions as building blocks of the volatility came into being because of a certain volatility misspecification in the classical Stein and Stein model. A version of this model that uses the reflecting Ornstein-Uhlenbeck process as the volatility process is a special example of a stochastic volatility model with reflection. The main results obtained in the present paper are sample path and small-noise large deviation principles for the log-price process in a stochastic volatility model with reflection under rather mild restrictions. We use these results to study the asymptotic behavior of binary barrier options and call prices in the small-noise regime.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信