挑战:处理网络文本来分类工作机会

F. Amato, R. Boselli, M. Cesarini, Fabio Mercorio, Mario Mezzanzanica, V. Moscato, Fabio Persia, A. Picariello
{"title":"挑战:处理网络文本来分类工作机会","authors":"F. Amato, R. Boselli, M. Cesarini, Fabio Mercorio, Mario Mezzanzanica, V. Moscato, Fabio Persia, A. Picariello","doi":"10.1109/ICOSC.2015.7050852","DOIUrl":null,"url":null,"abstract":"Today the Web represents a rich source of labour market data for both public and private operators, as a growing number of job offers are advertised through Web portals and services. In this paper we apply and compare several techniques, namely explicit-rules, machine learning, and LDA-based algorithms to classify a real dataset of Web job offers collected from 12 heterogeneous sources against a standard classification system of occupations.","PeriodicalId":126701,"journal":{"name":"Proceedings of the 2015 IEEE 9th International Conference on Semantic Computing (IEEE ICSC 2015)","volume":"19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-03-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"40","resultStr":"{\"title\":\"Challenge: Processing web texts for classifying job offers\",\"authors\":\"F. Amato, R. Boselli, M. Cesarini, Fabio Mercorio, Mario Mezzanzanica, V. Moscato, Fabio Persia, A. Picariello\",\"doi\":\"10.1109/ICOSC.2015.7050852\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Today the Web represents a rich source of labour market data for both public and private operators, as a growing number of job offers are advertised through Web portals and services. In this paper we apply and compare several techniques, namely explicit-rules, machine learning, and LDA-based algorithms to classify a real dataset of Web job offers collected from 12 heterogeneous sources against a standard classification system of occupations.\",\"PeriodicalId\":126701,\"journal\":{\"name\":\"Proceedings of the 2015 IEEE 9th International Conference on Semantic Computing (IEEE ICSC 2015)\",\"volume\":\"19 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-03-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"40\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2015 IEEE 9th International Conference on Semantic Computing (IEEE ICSC 2015)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICOSC.2015.7050852\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2015 IEEE 9th International Conference on Semantic Computing (IEEE ICSC 2015)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICOSC.2015.7050852","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 40

摘要

今天,随着越来越多的工作机会通过门户网站和服务发布广告,网络为公共和私营运营商提供了丰富的劳动力市场数据来源。在本文中,我们应用并比较了几种技术,即显式规则、机器学习和基于lda的算法,将从12个异构来源收集的Web工作机会的真实数据集与标准的职业分类系统进行分类。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Challenge: Processing web texts for classifying job offers
Today the Web represents a rich source of labour market data for both public and private operators, as a growing number of job offers are advertised through Web portals and services. In this paper we apply and compare several techniques, namely explicit-rules, machine learning, and LDA-based algorithms to classify a real dataset of Web job offers collected from 12 heterogeneous sources against a standard classification system of occupations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信