通过LMO函子在同调圆柱体上的Y过滤的阿贝尔商

Yuta Nozaki, Masatoshi Sato, Masaaki Suzuki
{"title":"通过LMO函子在同调圆柱体上的Y过滤的阿贝尔商","authors":"Yuta Nozaki, Masatoshi Sato, Masaaki Suzuki","doi":"10.2140/gt.2022.26.221","DOIUrl":null,"url":null,"abstract":"We construct a series of homomorphisms on the $Y$-filtration on the homology cylinders via the mod $\\mathbb{Z}$ reduction of the LMO functor. The restriction of our homomorphism to the lower central series of the Torelli group does not factor through Morita's refinement of the Johnson homomorphism. We use it to show that the abelianization of the Johnson kernel of a closed surface has torsion elements. We also determine the third graded quotient $Y_3\\mathcal{C}_{g,1}/Y_4$ of the $Y$-filtration.","PeriodicalId":254292,"journal":{"name":"Geometry & Topology","volume":"29 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Abelian quotients of the Y –filtration on the\\nhomology cylinders via the LMO functor\",\"authors\":\"Yuta Nozaki, Masatoshi Sato, Masaaki Suzuki\",\"doi\":\"10.2140/gt.2022.26.221\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We construct a series of homomorphisms on the $Y$-filtration on the homology cylinders via the mod $\\\\mathbb{Z}$ reduction of the LMO functor. The restriction of our homomorphism to the lower central series of the Torelli group does not factor through Morita's refinement of the Johnson homomorphism. We use it to show that the abelianization of the Johnson kernel of a closed surface has torsion elements. We also determine the third graded quotient $Y_3\\\\mathcal{C}_{g,1}/Y_4$ of the $Y$-filtration.\",\"PeriodicalId\":254292,\"journal\":{\"name\":\"Geometry & Topology\",\"volume\":\"29 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-01-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Geometry & Topology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2140/gt.2022.26.221\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geometry & Topology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2140/gt.2022.26.221","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

通过LMO函子的mod $\mathbb{Z}$约简,构造了一系列在Y$过滤上的同态柱面。我们的同态对Torelli群的下中心级数的限制没有通过Morita对Johnson同态的改进来考虑。我们用它证明了一个封闭曲面的约翰逊核的阿贝尔化具有扭转元。我们还确定了$Y$过滤的第三阶商$Y_3\mathcal{C}_{g,1}/Y_4$。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Abelian quotients of the Y –filtration on the homology cylinders via the LMO functor
We construct a series of homomorphisms on the $Y$-filtration on the homology cylinders via the mod $\mathbb{Z}$ reduction of the LMO functor. The restriction of our homomorphism to the lower central series of the Torelli group does not factor through Morita's refinement of the Johnson homomorphism. We use it to show that the abelianization of the Johnson kernel of a closed surface has torsion elements. We also determine the third graded quotient $Y_3\mathcal{C}_{g,1}/Y_4$ of the $Y$-filtration.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信