两节课讲规范论和Khovanov同调

E. Witten
{"title":"两节课讲规范论和Khovanov同调","authors":"E. Witten","doi":"10.1090/PSPUM/099/01747","DOIUrl":null,"url":null,"abstract":"In the first of these two lectures, I use a comparison to symplectic Khovanov homology to motivate the idea that the Jones polynomial and Khovanov homology of knots can be defined by counting the solutions of certain elliptic partial differential equations in 4 or 5 dimensions. The second lecture is devoted to a description of the rather unusual boundary conditions by which these equations should be supplemented. An appendix describes some physical background. (Versions of these lectures have been presented at various institutions including the Simons Center at Stonybrook, the TSIMF conference center in Sanya, and also Columbia University and the University of Pennsylvania.)","PeriodicalId":384712,"journal":{"name":"Proceedings of Symposia in Pure\n Mathematics","volume":"34 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"20","resultStr":"{\"title\":\"Two lectures on gauge theory and Khovanov\\n homology\",\"authors\":\"E. Witten\",\"doi\":\"10.1090/PSPUM/099/01747\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the first of these two lectures, I use a comparison to symplectic Khovanov homology to motivate the idea that the Jones polynomial and Khovanov homology of knots can be defined by counting the solutions of certain elliptic partial differential equations in 4 or 5 dimensions. The second lecture is devoted to a description of the rather unusual boundary conditions by which these equations should be supplemented. An appendix describes some physical background. (Versions of these lectures have been presented at various institutions including the Simons Center at Stonybrook, the TSIMF conference center in Sanya, and also Columbia University and the University of Pennsylvania.)\",\"PeriodicalId\":384712,\"journal\":{\"name\":\"Proceedings of Symposia in Pure\\n Mathematics\",\"volume\":\"34 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-03-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"20\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of Symposia in Pure\\n Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1090/PSPUM/099/01747\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of Symposia in Pure\n Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1090/PSPUM/099/01747","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 20

摘要

在这两节课的第一节课中,我用了一个与辛霍瓦诺夫同调的比较来激发一个想法,琼斯多项式和霍瓦诺夫同调的结可以通过计算某些椭圆偏微分方程在4或5维中的解来定义。第二节课专门描述了这些方程需要补充的非常不寻常的边界条件。附录描述了一些物理背景。(这些讲座的版本已经在许多机构展出,包括石溪的西蒙斯中心,三亚的TSIMF会议中心,以及哥伦比亚大学和宾夕法尼亚大学。)
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Two lectures on gauge theory and Khovanov homology
In the first of these two lectures, I use a comparison to symplectic Khovanov homology to motivate the idea that the Jones polynomial and Khovanov homology of knots can be defined by counting the solutions of certain elliptic partial differential equations in 4 or 5 dimensions. The second lecture is devoted to a description of the rather unusual boundary conditions by which these equations should be supplemented. An appendix describes some physical background. (Versions of these lectures have been presented at various institutions including the Simons Center at Stonybrook, the TSIMF conference center in Sanya, and also Columbia University and the University of Pennsylvania.)
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.60
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信