一般势理论中的多谐波

F. R. Harvey, H. Lawson, Jr.
{"title":"一般势理论中的多谐波","authors":"F. R. Harvey, H. Lawson, Jr.","doi":"10.1090/conm/735/14824","DOIUrl":null,"url":null,"abstract":"The general purpose of this paper is to investigate the notion of \"pluriharmonics\" for the general potential theory associated to a convex cone $F\\subset {\\rm Sym}^2({\\bf R}^n)$. For such $F$ there exists a maximal linear subspace $E\\subset F$, called the edge, and $F$ decomposes as $F=E \\oplus F_0$. The pluriharmonics or edge functions are $u$'s with $D^2u \\in E$. Many subequations $F$ have the same edge $E$, but there is a unique smallest such subequation. These are the focus of this investigation. Structural results are given. Many examples are described, and a classification of highly symmetric cases is given. Finally, the relevance of edge functions to the solutions of the Dirichlet problem is established.","PeriodicalId":139005,"journal":{"name":"Advances in Complex Geometry","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Pluriharmonics in general potential\\n theories\",\"authors\":\"F. R. Harvey, H. Lawson, Jr.\",\"doi\":\"10.1090/conm/735/14824\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The general purpose of this paper is to investigate the notion of \\\"pluriharmonics\\\" for the general potential theory associated to a convex cone $F\\\\subset {\\\\rm Sym}^2({\\\\bf R}^n)$. For such $F$ there exists a maximal linear subspace $E\\\\subset F$, called the edge, and $F$ decomposes as $F=E \\\\oplus F_0$. The pluriharmonics or edge functions are $u$'s with $D^2u \\\\in E$. Many subequations $F$ have the same edge $E$, but there is a unique smallest such subequation. These are the focus of this investigation. Structural results are given. Many examples are described, and a classification of highly symmetric cases is given. Finally, the relevance of edge functions to the solutions of the Dirichlet problem is established.\",\"PeriodicalId\":139005,\"journal\":{\"name\":\"Advances in Complex Geometry\",\"volume\":\"17 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-12-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Complex Geometry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1090/conm/735/14824\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Complex Geometry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1090/conm/735/14824","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

本文的一般目的是研究与凸锥$F\子集{\rm Sym}^2({\bf R}^n)$相关的一般势理论的“多谐波”概念。对于这样的$F$,存在一个极大的线性子空间$E\子集F$,称为边,并且$F$分解为$F=E \ 0 + F_0$。多谐波或边缘函数是在E$中带有$D^2u \的$u$。许多子方程$F$有相同的边$E$,但有一个唯一的最小子方程。这些是本次调查的重点。给出了结构结果。描述了许多例子,并给出了高度对称情况的分类。最后,建立了边函数与狄利克雷问题解的相关性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Pluriharmonics in general potential theories
The general purpose of this paper is to investigate the notion of "pluriharmonics" for the general potential theory associated to a convex cone $F\subset {\rm Sym}^2({\bf R}^n)$. For such $F$ there exists a maximal linear subspace $E\subset F$, called the edge, and $F$ decomposes as $F=E \oplus F_0$. The pluriharmonics or edge functions are $u$'s with $D^2u \in E$. Many subequations $F$ have the same edge $E$, but there is a unique smallest such subequation. These are the focus of this investigation. Structural results are given. Many examples are described, and a classification of highly symmetric cases is given. Finally, the relevance of edge functions to the solutions of the Dirichlet problem is established.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信