并发工作负载下的多核列存储并行化

M. Gawade, M. Kersten, A. Simitsis
{"title":"并发工作负载下的多核列存储并行化","authors":"M. Gawade, M. Kersten, A. Simitsis","doi":"10.1145/2933349.2933350","DOIUrl":null,"url":null,"abstract":"Columnar database systems, designed for an optimal OLAP workload performance, strive for maximum multi-core utilization under concurrent query executions. However, multi-core parallel plan generated for isolated execution leads to suboptimal performance during concurrent query execution.\n In this paper, we analyze the concurrent workload resource contention effects on multi-core plans using three intra-query parallelization techniques, static, adaptive, and cost model parallelization. We focus on a plan level comparison of selected TPC-H queries, using in-memory multi-core columnar systems. Excessive partitions in statically parallelized plans result into heavy L3 cache misses leading to memory contention, degrading query performance severely. Overall, adaptive plans show more robustness, less scheduling overheads, and an average 50% execution time improvement compared to statically parallelized plans, and cost model based plans.","PeriodicalId":298901,"journal":{"name":"International Workshop on Data Management on New Hardware","volume":"71 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Multi-core column-store parallelization under concurrent workload\",\"authors\":\"M. Gawade, M. Kersten, A. Simitsis\",\"doi\":\"10.1145/2933349.2933350\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Columnar database systems, designed for an optimal OLAP workload performance, strive for maximum multi-core utilization under concurrent query executions. However, multi-core parallel plan generated for isolated execution leads to suboptimal performance during concurrent query execution.\\n In this paper, we analyze the concurrent workload resource contention effects on multi-core plans using three intra-query parallelization techniques, static, adaptive, and cost model parallelization. We focus on a plan level comparison of selected TPC-H queries, using in-memory multi-core columnar systems. Excessive partitions in statically parallelized plans result into heavy L3 cache misses leading to memory contention, degrading query performance severely. Overall, adaptive plans show more robustness, less scheduling overheads, and an average 50% execution time improvement compared to statically parallelized plans, and cost model based plans.\",\"PeriodicalId\":298901,\"journal\":{\"name\":\"International Workshop on Data Management on New Hardware\",\"volume\":\"71 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Workshop on Data Management on New Hardware\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2933349.2933350\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Workshop on Data Management on New Hardware","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2933349.2933350","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

列式数据库系统是为实现最佳OLAP工作负载性能而设计的,它在并发查询执行下力求实现最大的多核利用率。但是,为隔离执行生成的多核并行计划会导致并发查询执行期间的性能不理想。在本文中,我们使用三种查询内并行化技术,静态、自适应和成本模型并行化,分析并发工作负载资源争用对多核计划的影响。我们着重于使用内存中的多核列式系统对所选TPC-H查询进行计划级比较。在静态并行计划中,过多的分区会导致严重的L3缓存丢失,从而导致内存争用,严重降低查询性能。总的来说,与静态并行计划和基于成本模型的计划相比,自适应计划表现出更强的健壮性、更少的调度开销和平均50%的执行时间改进。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Multi-core column-store parallelization under concurrent workload
Columnar database systems, designed for an optimal OLAP workload performance, strive for maximum multi-core utilization under concurrent query executions. However, multi-core parallel plan generated for isolated execution leads to suboptimal performance during concurrent query execution. In this paper, we analyze the concurrent workload resource contention effects on multi-core plans using three intra-query parallelization techniques, static, adaptive, and cost model parallelization. We focus on a plan level comparison of selected TPC-H queries, using in-memory multi-core columnar systems. Excessive partitions in statically parallelized plans result into heavy L3 cache misses leading to memory contention, degrading query performance severely. Overall, adaptive plans show more robustness, less scheduling overheads, and an average 50% execution time improvement compared to statically parallelized plans, and cost model based plans.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信