{"title":"CGRAs上的分支感知环路映射","authors":"M. Hamzeh, Aviral Shrivastava, S. Vrudhula","doi":"10.1145/2593069.2593100","DOIUrl":null,"url":null,"abstract":"One of the challenges that all accelerators face, is to execute loops that have if-then-else constructs. There are three ways to accelerate loops with an if-then-else construct on a Coarse-grained reconfigurable architecture (CGRA): full predication, partial predication, and dual-issue scheme. In comparison with the other schemes, dual-issue scheme may achieve the best performance, but it requires compiler support - which does not exist. In this paper, we develop compiler techniques to map loops with conditionals on CGRA for the dual-issue scheme. Our experiments show: i) 40% of loops that can be accelerated on CGRA have conditionals, ii) The proposed dual-issue scheme enables our compiler to accelerate loops 40% faster than full predication scheme proposed in [12], and iii) Our compiler assisted dual issue scheme can exploit richer interconnects, if present.","PeriodicalId":433816,"journal":{"name":"2014 51st ACM/EDAC/IEEE Design Automation Conference (DAC)","volume":"30 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"32","resultStr":"{\"title\":\"Branch-aware loop mapping on CGRAs\",\"authors\":\"M. Hamzeh, Aviral Shrivastava, S. Vrudhula\",\"doi\":\"10.1145/2593069.2593100\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"One of the challenges that all accelerators face, is to execute loops that have if-then-else constructs. There are three ways to accelerate loops with an if-then-else construct on a Coarse-grained reconfigurable architecture (CGRA): full predication, partial predication, and dual-issue scheme. In comparison with the other schemes, dual-issue scheme may achieve the best performance, but it requires compiler support - which does not exist. In this paper, we develop compiler techniques to map loops with conditionals on CGRA for the dual-issue scheme. Our experiments show: i) 40% of loops that can be accelerated on CGRA have conditionals, ii) The proposed dual-issue scheme enables our compiler to accelerate loops 40% faster than full predication scheme proposed in [12], and iii) Our compiler assisted dual issue scheme can exploit richer interconnects, if present.\",\"PeriodicalId\":433816,\"journal\":{\"name\":\"2014 51st ACM/EDAC/IEEE Design Automation Conference (DAC)\",\"volume\":\"30 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"32\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 51st ACM/EDAC/IEEE Design Automation Conference (DAC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2593069.2593100\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 51st ACM/EDAC/IEEE Design Automation Conference (DAC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2593069.2593100","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
One of the challenges that all accelerators face, is to execute loops that have if-then-else constructs. There are three ways to accelerate loops with an if-then-else construct on a Coarse-grained reconfigurable architecture (CGRA): full predication, partial predication, and dual-issue scheme. In comparison with the other schemes, dual-issue scheme may achieve the best performance, but it requires compiler support - which does not exist. In this paper, we develop compiler techniques to map loops with conditionals on CGRA for the dual-issue scheme. Our experiments show: i) 40% of loops that can be accelerated on CGRA have conditionals, ii) The proposed dual-issue scheme enables our compiler to accelerate loops 40% faster than full predication scheme proposed in [12], and iii) Our compiler assisted dual issue scheme can exploit richer interconnects, if present.