V. Kolobrodov, Grygorij S. Tymchik, V. Mykytenko, A. Kylivnyk, Ryszard S. Romaniuk, P. Kisała, A. Kozbakova, B. Yeraliyeva
{"title":"红外辐射偏振器技术","authors":"V. Kolobrodov, Grygorij S. Tymchik, V. Mykytenko, A. Kylivnyk, Ryszard S. Romaniuk, P. Kisała, A. Kozbakova, B. Yeraliyeva","doi":"10.1117/12.2569786","DOIUrl":null,"url":null,"abstract":"Among the various characteristics of infrared radiation, the degree of polarization is not often used in radiation analysis. The main reason is that polarization is less informative characteristic compared to others for most practical tasks. Also obtaining polarized radiation in infrared spectrum is relative complex and expensive act. In some cases, such as remote sensing, the improvement of spatial, radiometric and spectral resolution approaches it’s physical limit. It becomes relevant to obtain additional information of a different nature, such as polarization information. Modern infrared radiation polarizers based on diffraction gratings are quite expensive. The article explores the possibility of creating infrared polarizers based on a planeparallel plate, to which radiation falls at an Brewster angle. It is shown that the polarizer operating on transmittance will be more efficient than reflecting radiation polarizer, since it does not deviate the optical axis by a significant angle. Such a polarizer provides a polarization degree of 90% and a transmittance of about 50%.","PeriodicalId":299297,"journal":{"name":"Optical Fibers and Their Applications","volume":"135 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Technology of infrared radiation polarizer\",\"authors\":\"V. Kolobrodov, Grygorij S. Tymchik, V. Mykytenko, A. Kylivnyk, Ryszard S. Romaniuk, P. Kisała, A. Kozbakova, B. Yeraliyeva\",\"doi\":\"10.1117/12.2569786\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Among the various characteristics of infrared radiation, the degree of polarization is not often used in radiation analysis. The main reason is that polarization is less informative characteristic compared to others for most practical tasks. Also obtaining polarized radiation in infrared spectrum is relative complex and expensive act. In some cases, such as remote sensing, the improvement of spatial, radiometric and spectral resolution approaches it’s physical limit. It becomes relevant to obtain additional information of a different nature, such as polarization information. Modern infrared radiation polarizers based on diffraction gratings are quite expensive. The article explores the possibility of creating infrared polarizers based on a planeparallel plate, to which radiation falls at an Brewster angle. It is shown that the polarizer operating on transmittance will be more efficient than reflecting radiation polarizer, since it does not deviate the optical axis by a significant angle. Such a polarizer provides a polarization degree of 90% and a transmittance of about 50%.\",\"PeriodicalId\":299297,\"journal\":{\"name\":\"Optical Fibers and Their Applications\",\"volume\":\"135 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-06-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Optical Fibers and Their Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1117/12.2569786\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Optical Fibers and Their Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.2569786","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Among the various characteristics of infrared radiation, the degree of polarization is not often used in radiation analysis. The main reason is that polarization is less informative characteristic compared to others for most practical tasks. Also obtaining polarized radiation in infrared spectrum is relative complex and expensive act. In some cases, such as remote sensing, the improvement of spatial, radiometric and spectral resolution approaches it’s physical limit. It becomes relevant to obtain additional information of a different nature, such as polarization information. Modern infrared radiation polarizers based on diffraction gratings are quite expensive. The article explores the possibility of creating infrared polarizers based on a planeparallel plate, to which radiation falls at an Brewster angle. It is shown that the polarizer operating on transmittance will be more efficient than reflecting radiation polarizer, since it does not deviate the optical axis by a significant angle. Such a polarizer provides a polarization degree of 90% and a transmittance of about 50%.