面向FDD大规模MIMO:使用条件生成对抗网络的下行信道协方差矩阵估计

Bitan Banerjee, R. Elliott, W. Krzymień, H. Farmanbar
{"title":"面向FDD大规模MIMO:使用条件生成对抗网络的下行信道协方差矩阵估计","authors":"Bitan Banerjee, R. Elliott, W. Krzymień, H. Farmanbar","doi":"10.1109/PIMRC50174.2021.9569379","DOIUrl":null,"url":null,"abstract":"Estimating or predicting the downlink channel state information (CSI) is extremely important for practical implementation of frequency division duplex (FDD) massive MIMO. Estimation of downlink CSI from uplink CSI using second order channel statistics, namely the channel covariance matrix (CCM), is a promising approach. However, published work so far has rarely applied machine learning techniques to solve this problem using CCMs, most probably due to the unavailability of a direct mapping function or parametric model for supervised learning to convert from uplink to downlink CCMs. In this paper, we develop a conditional generative adversarial network (CGAN) method for uplink-to-downlink CCM conversion. To apply the CGAN-based method, we convert the uplink and downlink CCMs to images and use image translation techniques for CGANs. The normalized mean square error performance of the proposed CGAN is evaluated for several antenna array sizes and with both perfect and imperfect knowledge of the CCMs. Our results demonstrate performance improvement over existing algorithms.","PeriodicalId":283606,"journal":{"name":"2021 IEEE 32nd Annual International Symposium on Personal, Indoor and Mobile Radio Communications (PIMRC)","volume":"26 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Towards FDD Massive MIMO: Downlink Channel Covariance Matrix Estimation Using Conditional Generative Adversarial Networks\",\"authors\":\"Bitan Banerjee, R. Elliott, W. Krzymień, H. Farmanbar\",\"doi\":\"10.1109/PIMRC50174.2021.9569379\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Estimating or predicting the downlink channel state information (CSI) is extremely important for practical implementation of frequency division duplex (FDD) massive MIMO. Estimation of downlink CSI from uplink CSI using second order channel statistics, namely the channel covariance matrix (CCM), is a promising approach. However, published work so far has rarely applied machine learning techniques to solve this problem using CCMs, most probably due to the unavailability of a direct mapping function or parametric model for supervised learning to convert from uplink to downlink CCMs. In this paper, we develop a conditional generative adversarial network (CGAN) method for uplink-to-downlink CCM conversion. To apply the CGAN-based method, we convert the uplink and downlink CCMs to images and use image translation techniques for CGANs. The normalized mean square error performance of the proposed CGAN is evaluated for several antenna array sizes and with both perfect and imperfect knowledge of the CCMs. Our results demonstrate performance improvement over existing algorithms.\",\"PeriodicalId\":283606,\"journal\":{\"name\":\"2021 IEEE 32nd Annual International Symposium on Personal, Indoor and Mobile Radio Communications (PIMRC)\",\"volume\":\"26 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-09-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE 32nd Annual International Symposium on Personal, Indoor and Mobile Radio Communications (PIMRC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/PIMRC50174.2021.9569379\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE 32nd Annual International Symposium on Personal, Indoor and Mobile Radio Communications (PIMRC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PIMRC50174.2021.9569379","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

估计或预测下行信道状态信息(CSI)对于频分双工(FDD)大规模MIMO的实际实现至关重要。利用二阶信道统计量,即信道协方差矩阵(CCM),从上行信道估计下行信道CSI是一种很有前途的方法。然而,迄今为止发表的工作很少应用机器学习技术来解决使用ccm的这个问题,最可能的原因是没有直接映射函数或参数模型用于监督学习从上行链路转换到下行链路ccm。在本文中,我们开发了一种条件生成对抗网络(CGAN)方法用于上行链路到下行链路的CCM转换。为了应用基于cgan的方法,我们将上行链路和下行链路的ccm转换为图像,并将图像翻译技术用于cgan。在不同的天线阵列尺寸和ccm的完美和不完美知识下,对所提出的CGAN的归一化均方误差性能进行了评估。我们的结果证明了现有算法的性能改进。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Towards FDD Massive MIMO: Downlink Channel Covariance Matrix Estimation Using Conditional Generative Adversarial Networks
Estimating or predicting the downlink channel state information (CSI) is extremely important for practical implementation of frequency division duplex (FDD) massive MIMO. Estimation of downlink CSI from uplink CSI using second order channel statistics, namely the channel covariance matrix (CCM), is a promising approach. However, published work so far has rarely applied machine learning techniques to solve this problem using CCMs, most probably due to the unavailability of a direct mapping function or parametric model for supervised learning to convert from uplink to downlink CCMs. In this paper, we develop a conditional generative adversarial network (CGAN) method for uplink-to-downlink CCM conversion. To apply the CGAN-based method, we convert the uplink and downlink CCMs to images and use image translation techniques for CGANs. The normalized mean square error performance of the proposed CGAN is evaluated for several antenna array sizes and with both perfect and imperfect knowledge of the CCMs. Our results demonstrate performance improvement over existing algorithms.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信