文本分类的潜在因子支持向量机

Xiaofei Zhou, Li Guo, Ping Liu, Yanbing Liu
{"title":"文本分类的潜在因子支持向量机","authors":"Xiaofei Zhou, Li Guo, Ping Liu, Yanbing Liu","doi":"10.1109/ICDMW.2014.9","DOIUrl":null,"url":null,"abstract":"Text categorization is an important research in nature language process and content analysis. In this paper, we present latent factor SVM (LF-SVM) for text categorization which use latent factor vectors for category representation on text categorization. We prove that latent factors extracted by PLSA (probability latent semantic analysis) can span convex structure to express text category. Based on the category expression we adopt maximal margin hyper plane to divide the categories. The experiments on normal text datasets show that our motivation and algorithm are reasonable and effective.","PeriodicalId":289269,"journal":{"name":"2014 IEEE International Conference on Data Mining Workshop","volume":"201 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Latent Factor SVM for Text Categorization\",\"authors\":\"Xiaofei Zhou, Li Guo, Ping Liu, Yanbing Liu\",\"doi\":\"10.1109/ICDMW.2014.9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Text categorization is an important research in nature language process and content analysis. In this paper, we present latent factor SVM (LF-SVM) for text categorization which use latent factor vectors for category representation on text categorization. We prove that latent factors extracted by PLSA (probability latent semantic analysis) can span convex structure to express text category. Based on the category expression we adopt maximal margin hyper plane to divide the categories. The experiments on normal text datasets show that our motivation and algorithm are reasonable and effective.\",\"PeriodicalId\":289269,\"journal\":{\"name\":\"2014 IEEE International Conference on Data Mining Workshop\",\"volume\":\"201 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 IEEE International Conference on Data Mining Workshop\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICDMW.2014.9\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE International Conference on Data Mining Workshop","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDMW.2014.9","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

文本分类是自然语言过程和内容分析中的一项重要研究。本文提出了一种基于潜在因子向量的文本分类支持向量机(LF-SVM),它利用潜在因子向量对文本分类进行类别表示。我们证明了概率潜在语义分析(PLSA)提取的潜在因子可以跨越凸结构来表达文本类别。在分类表达式的基础上,采用极大边距超平面对分类进行划分。在普通文本数据集上的实验表明,我们的动机和算法是合理有效的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Latent Factor SVM for Text Categorization
Text categorization is an important research in nature language process and content analysis. In this paper, we present latent factor SVM (LF-SVM) for text categorization which use latent factor vectors for category representation on text categorization. We prove that latent factors extracted by PLSA (probability latent semantic analysis) can span convex structure to express text category. Based on the category expression we adopt maximal margin hyper plane to divide the categories. The experiments on normal text datasets show that our motivation and algorithm are reasonable and effective.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信