具有两自由边界的Leslie-Gower捕食者-猎物模型

A. Elmurodov, N.N. Yuldashev, R. Maqsudov, Gulnoz Abdikayimova
{"title":"具有两自由边界的Leslie-Gower捕食者-猎物模型","authors":"A. Elmurodov, N.N. Yuldashev, R. Maqsudov, Gulnoz Abdikayimova","doi":"10.1109/ICISCT55600.2022.10146896","DOIUrl":null,"url":null,"abstract":"In this article, we study the behavior of two species evolving in a domain with a two-free boundary. This system mimics the spread of invasive or new predator species, in which free boundaries represent the expanding fronts of predator species and are described by the Stefan condition. A priori estimates for the required functions are established. These estimates are used to prove the existence and uniqueness of the solution.","PeriodicalId":332984,"journal":{"name":"2022 International Conference on Information Science and Communications Technologies (ICISCT)","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Leslie-Gower predator-prey model with a two-free boundary\",\"authors\":\"A. Elmurodov, N.N. Yuldashev, R. Maqsudov, Gulnoz Abdikayimova\",\"doi\":\"10.1109/ICISCT55600.2022.10146896\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this article, we study the behavior of two species evolving in a domain with a two-free boundary. This system mimics the spread of invasive or new predator species, in which free boundaries represent the expanding fronts of predator species and are described by the Stefan condition. A priori estimates for the required functions are established. These estimates are used to prove the existence and uniqueness of the solution.\",\"PeriodicalId\":332984,\"journal\":{\"name\":\"2022 International Conference on Information Science and Communications Technologies (ICISCT)\",\"volume\":\"9 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-09-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 International Conference on Information Science and Communications Technologies (ICISCT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICISCT55600.2022.10146896\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 International Conference on Information Science and Communications Technologies (ICISCT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICISCT55600.2022.10146896","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们研究了两个物种在具有两自由边界的区域内进化的行为。该系统模拟了入侵或新的捕食者物种的传播,其中自由边界代表了捕食者物种的扩张前沿,并由Stefan条件描述。建立了所需功能的先验估计。这些估计被用来证明解的存在唯一性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Leslie-Gower predator-prey model with a two-free boundary
In this article, we study the behavior of two species evolving in a domain with a two-free boundary. This system mimics the spread of invasive or new predator species, in which free boundaries represent the expanding fronts of predator species and are described by the Stefan condition. A priori estimates for the required functions are established. These estimates are used to prove the existence and uniqueness of the solution.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信