有限哥德尔代数的自同构群

S. Aguzzoli, B. Gerla, V. Marra
{"title":"有限哥德尔代数的自同构群","authors":"S. Aguzzoli, B. Gerla, V. Marra","doi":"10.1109/ISMVL.2010.13","DOIUrl":null,"url":null,"abstract":"We investigate the automorphism group of finite Gödel algebras, the algebraic counterpart of Godel infinite-valued propositional logic with a finite number of variables. In logical terms, we look at the structure of substitution of terms that preserve logical equivalence in this logic. We obtain a characterisation of the arising automorphism groups in terms of semidirect and direct products of symmetric groups. Building on this, we establish an explicit closed formula for the cardinality of the automorphism group of the Lindenbaum algebra of Gödel logic over n propositional variables, for any integer n >= 1.","PeriodicalId":447743,"journal":{"name":"2010 40th IEEE International Symposium on Multiple-Valued Logic","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2010-05-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"The Automorphism Group of Finite Godel Algebras\",\"authors\":\"S. Aguzzoli, B. Gerla, V. Marra\",\"doi\":\"10.1109/ISMVL.2010.13\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We investigate the automorphism group of finite Gödel algebras, the algebraic counterpart of Godel infinite-valued propositional logic with a finite number of variables. In logical terms, we look at the structure of substitution of terms that preserve logical equivalence in this logic. We obtain a characterisation of the arising automorphism groups in terms of semidirect and direct products of symmetric groups. Building on this, we establish an explicit closed formula for the cardinality of the automorphism group of the Lindenbaum algebra of Gödel logic over n propositional variables, for any integer n >= 1.\",\"PeriodicalId\":447743,\"journal\":{\"name\":\"2010 40th IEEE International Symposium on Multiple-Valued Logic\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-05-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 40th IEEE International Symposium on Multiple-Valued Logic\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISMVL.2010.13\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 40th IEEE International Symposium on Multiple-Valued Logic","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISMVL.2010.13","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

研究有限代数Gödel的自同构群,这是有限变量的哥德尔无限值命题逻辑的代数对立物。在逻辑方面,我们看一下在这个逻辑中保持逻辑等价的项的替换结构。我们得到了对称群的半直积和直积所产生的自同构群的一个刻画。在此基础上,对于任意整数n >= 1,我们建立了一个关于Gödel逻辑的Lindenbaum代数在n个命题变量上的自同构群的基数的显式封闭公式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The Automorphism Group of Finite Godel Algebras
We investigate the automorphism group of finite Gödel algebras, the algebraic counterpart of Godel infinite-valued propositional logic with a finite number of variables. In logical terms, we look at the structure of substitution of terms that preserve logical equivalence in this logic. We obtain a characterisation of the arising automorphism groups in terms of semidirect and direct products of symmetric groups. Building on this, we establish an explicit closed formula for the cardinality of the automorphism group of the Lindenbaum algebra of Gödel logic over n propositional variables, for any integer n >= 1.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信