梯度和流动:最大流量问题的连续优化方法

A. Madry
{"title":"梯度和流动:最大流量问题的连续优化方法","authors":"A. Madry","doi":"10.1142/9789813272880_0185","DOIUrl":null,"url":null,"abstract":"We use the lens of the maximum flow problem, one of the most fundamental problems in algorithmic graph theory, to describe a new framework for design of graph algorithms. At a high level, this framework casts the graph problem at hand as a convex optimization task and then applies to it an appropriate method from the continuous optimization toolkit. We survey how this new approach led to the first in decades progress on the maximum flow problem and then briefly sketch the challenges that still remain.","PeriodicalId":318252,"journal":{"name":"Proceedings of the International Congress of Mathematicians (ICM 2018)","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"GRADIENTS AND FLOWS: CONTINUOUS OPTIMIZATION APPROACHES TO THE MAXIMUM FLOW PROBLEM\",\"authors\":\"A. Madry\",\"doi\":\"10.1142/9789813272880_0185\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We use the lens of the maximum flow problem, one of the most fundamental problems in algorithmic graph theory, to describe a new framework for design of graph algorithms. At a high level, this framework casts the graph problem at hand as a convex optimization task and then applies to it an appropriate method from the continuous optimization toolkit. We survey how this new approach led to the first in decades progress on the maximum flow problem and then briefly sketch the challenges that still remain.\",\"PeriodicalId\":318252,\"journal\":{\"name\":\"Proceedings of the International Congress of Mathematicians (ICM 2018)\",\"volume\":\"9 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the International Congress of Mathematicians (ICM 2018)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1142/9789813272880_0185\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the International Congress of Mathematicians (ICM 2018)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/9789813272880_0185","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

本文从算法图论中最基本的问题之一——最大流量问题出发,描述了一种新的图算法设计框架。在高层次上,该框架将手头的图问题转换为凸优化任务,然后将连续优化工具包中的适当方法应用于它。我们调查了这种新方法是如何导致几十年来第一次在最大流量问题上取得进展的,然后简要概述了仍然存在的挑战。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
GRADIENTS AND FLOWS: CONTINUOUS OPTIMIZATION APPROACHES TO THE MAXIMUM FLOW PROBLEM
We use the lens of the maximum flow problem, one of the most fundamental problems in algorithmic graph theory, to describe a new framework for design of graph algorithms. At a high level, this framework casts the graph problem at hand as a convex optimization task and then applies to it an appropriate method from the continuous optimization toolkit. We survey how this new approach led to the first in decades progress on the maximum flow problem and then briefly sketch the challenges that still remain.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信