正则格约简辅助有序逐次干扰消除MIMO检测

Jun Tong, Qinghua Guo, J. Xi, Yanguang Yu, P. Schreier
{"title":"正则格约简辅助有序逐次干扰消除MIMO检测","authors":"Jun Tong, Qinghua Guo, J. Xi, Yanguang Yu, P. Schreier","doi":"10.1109/SSP.2018.8450791","DOIUrl":null,"url":null,"abstract":"Lattice reduction-aided ordered successive interference cancellation (LRA-OSIC) detection is capable of achieving optimal diversity orders for multiple-input multiple-output (MIMO) communications. When the number of antennas is large, however, there can still be a significant gap between the performance achievable with the LRA-OSIC detector and the maximum likelihood detector (MLD). This paper introduces a regularization approach to enhance the performance of LRA-OSIC detectors. Multiple approximate models for the same MIMO channel are generated and a standard LRA-OSIC detector is then constructed for each model. The best detector is determined for each instantaneous received symbol, using a residual-based method. The search can be terminated using a stopping criterion. Simulation results show that significant performance enhancements can be achieved by the proposed design at only a moderate increase of complexity1.","PeriodicalId":330528,"journal":{"name":"2018 IEEE Statistical Signal Processing Workshop (SSP)","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Regularized Lattice Reduction-Aided Ordered Successive Interference Cancellation for MIMO Detection\",\"authors\":\"Jun Tong, Qinghua Guo, J. Xi, Yanguang Yu, P. Schreier\",\"doi\":\"10.1109/SSP.2018.8450791\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Lattice reduction-aided ordered successive interference cancellation (LRA-OSIC) detection is capable of achieving optimal diversity orders for multiple-input multiple-output (MIMO) communications. When the number of antennas is large, however, there can still be a significant gap between the performance achievable with the LRA-OSIC detector and the maximum likelihood detector (MLD). This paper introduces a regularization approach to enhance the performance of LRA-OSIC detectors. Multiple approximate models for the same MIMO channel are generated and a standard LRA-OSIC detector is then constructed for each model. The best detector is determined for each instantaneous received symbol, using a residual-based method. The search can be terminated using a stopping criterion. Simulation results show that significant performance enhancements can be achieved by the proposed design at only a moderate increase of complexity1.\",\"PeriodicalId\":330528,\"journal\":{\"name\":\"2018 IEEE Statistical Signal Processing Workshop (SSP)\",\"volume\":\"11 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE Statistical Signal Processing Workshop (SSP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SSP.2018.8450791\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE Statistical Signal Processing Workshop (SSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SSP.2018.8450791","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

晶格约简辅助有序连续干扰消除(LRA-OSIC)检测能够实现多输入多输出(MIMO)通信的最佳分集顺序。然而,当天线数量很大时,LRA-OSIC检测器与最大似然检测器(MLD)之间的性能仍然存在显著差距。本文介绍了一种正则化方法来提高LRA-OSIC探测器的性能。为同一MIMO信道生成多个近似模型,然后为每个模型构建一个标准LRA-OSIC检测器。使用基于残差的方法确定每个瞬时接收符号的最佳检测器。可以使用停止条件终止搜索。仿真结果表明,所提出的设计可以在适度增加复杂度的情况下实现显著的性能增强1。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Regularized Lattice Reduction-Aided Ordered Successive Interference Cancellation for MIMO Detection
Lattice reduction-aided ordered successive interference cancellation (LRA-OSIC) detection is capable of achieving optimal diversity orders for multiple-input multiple-output (MIMO) communications. When the number of antennas is large, however, there can still be a significant gap between the performance achievable with the LRA-OSIC detector and the maximum likelihood detector (MLD). This paper introduces a regularization approach to enhance the performance of LRA-OSIC detectors. Multiple approximate models for the same MIMO channel are generated and a standard LRA-OSIC detector is then constructed for each model. The best detector is determined for each instantaneous received symbol, using a residual-based method. The search can be terminated using a stopping criterion. Simulation results show that significant performance enhancements can be achieved by the proposed design at only a moderate increase of complexity1.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信