{"title":"集成电路参数变化情况下桥接故障的高质量测试向量","authors":"M. Favalli, M. Dalpasso","doi":"10.1109/DFT.2007.19","DOIUrl":null,"url":null,"abstract":"The growing dispersion of parameters in CMOS ICs poses relevant uncertainties on gate output conductances and logic thresholds that affect bridging fault (BF) detection. To analyze the quality of fault simulation and test generation tools using nominal IC parameters, we studied BF detection as a function of the standard deviation of parameters: results show that a single test vector cannot ensure acceptable escape probabilities. Conversely, the minimal number of test vectors providing null escape probability is upper-bounded with respect to variations of parameters, as verified by Monte Carlo electrical-level simulations. We propose a method to derive such minimal test sets for low frequency testing. A fault simulator and a test generator have been developed supporting the search of minimal test sets targeting a null escape probability.","PeriodicalId":259700,"journal":{"name":"22nd IEEE International Symposium on Defect and Fault-Tolerance in VLSI Systems (DFT 2007)","volume":"38 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"High Quality Test Vectors for Bridging Faults in the Presence of IC's Parameters Variations\",\"authors\":\"M. Favalli, M. Dalpasso\",\"doi\":\"10.1109/DFT.2007.19\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The growing dispersion of parameters in CMOS ICs poses relevant uncertainties on gate output conductances and logic thresholds that affect bridging fault (BF) detection. To analyze the quality of fault simulation and test generation tools using nominal IC parameters, we studied BF detection as a function of the standard deviation of parameters: results show that a single test vector cannot ensure acceptable escape probabilities. Conversely, the minimal number of test vectors providing null escape probability is upper-bounded with respect to variations of parameters, as verified by Monte Carlo electrical-level simulations. We propose a method to derive such minimal test sets for low frequency testing. A fault simulator and a test generator have been developed supporting the search of minimal test sets targeting a null escape probability.\",\"PeriodicalId\":259700,\"journal\":{\"name\":\"22nd IEEE International Symposium on Defect and Fault-Tolerance in VLSI Systems (DFT 2007)\",\"volume\":\"38 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-09-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"22nd IEEE International Symposium on Defect and Fault-Tolerance in VLSI Systems (DFT 2007)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/DFT.2007.19\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"22nd IEEE International Symposium on Defect and Fault-Tolerance in VLSI Systems (DFT 2007)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DFT.2007.19","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
High Quality Test Vectors for Bridging Faults in the Presence of IC's Parameters Variations
The growing dispersion of parameters in CMOS ICs poses relevant uncertainties on gate output conductances and logic thresholds that affect bridging fault (BF) detection. To analyze the quality of fault simulation and test generation tools using nominal IC parameters, we studied BF detection as a function of the standard deviation of parameters: results show that a single test vector cannot ensure acceptable escape probabilities. Conversely, the minimal number of test vectors providing null escape probability is upper-bounded with respect to variations of parameters, as verified by Monte Carlo electrical-level simulations. We propose a method to derive such minimal test sets for low frequency testing. A fault simulator and a test generator have been developed supporting the search of minimal test sets targeting a null escape probability.