机载多传感器自动避碰跟踪

G. Fasano, D. Accardo, A. Moccia, L. Paparone
{"title":"机载多传感器自动避碰跟踪","authors":"G. Fasano, D. Accardo, A. Moccia, L. Paparone","doi":"10.1109/ICIF.2006.301724","DOIUrl":null,"url":null,"abstract":"This paper presents the tracking algorithms developed for a multisensor anti-collision system for unmanned aerial vehicles. This system will be developed by the Italian Aerospace Research Center (CIRA) within a research project named TECVOL, funded in the frame of the National Aerospace Research Program (PRO.R.A.) on UAV. The hardware setup is composed by a pulsed radar, two infrared cameras, and two visible cameras used as aiding sensors, thus the adoption of a fusion algorithm was mandatory to obtain the most accurate and reliable tracking estimate of obstacles. The paper describes the different modes and the relevant attainable performances of the developed tracking algorithm. The adopted data fusion technique for tracking is the Kalman filter. In particular, three different algorithms are compared in a typical collision scenario, namely conventional filter in rectangular coordinates, conventional filter in spherical coordinates, and extended filter in rectangular coordinates. Though all the three algorithms exhibited satisfying performances, the extended filter in rectangular coordinates resulted the most adequate for this airborne application","PeriodicalId":248061,"journal":{"name":"2006 9th International Conference on Information Fusion","volume":"20 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":"{\"title\":\"Airborne Multisensor Tracking for Autonomous Collision Avoidance\",\"authors\":\"G. Fasano, D. Accardo, A. Moccia, L. Paparone\",\"doi\":\"10.1109/ICIF.2006.301724\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents the tracking algorithms developed for a multisensor anti-collision system for unmanned aerial vehicles. This system will be developed by the Italian Aerospace Research Center (CIRA) within a research project named TECVOL, funded in the frame of the National Aerospace Research Program (PRO.R.A.) on UAV. The hardware setup is composed by a pulsed radar, two infrared cameras, and two visible cameras used as aiding sensors, thus the adoption of a fusion algorithm was mandatory to obtain the most accurate and reliable tracking estimate of obstacles. The paper describes the different modes and the relevant attainable performances of the developed tracking algorithm. The adopted data fusion technique for tracking is the Kalman filter. In particular, three different algorithms are compared in a typical collision scenario, namely conventional filter in rectangular coordinates, conventional filter in spherical coordinates, and extended filter in rectangular coordinates. Though all the three algorithms exhibited satisfying performances, the extended filter in rectangular coordinates resulted the most adequate for this airborne application\",\"PeriodicalId\":248061,\"journal\":{\"name\":\"2006 9th International Conference on Information Fusion\",\"volume\":\"20 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2006-07-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"13\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2006 9th International Conference on Information Fusion\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICIF.2006.301724\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2006 9th International Conference on Information Fusion","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIF.2006.301724","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

摘要

提出了一种无人机多传感器防撞系统的跟踪算法。该系统将由意大利航空航天研究中心(CIRA)在一个名为TECVOL的研究项目中开发,该研究项目在国家航空航天研究计划(pro . r.a.)的无人机框架下获得资助。硬件设置由一个脉冲雷达、两个红外摄像机和两个可见光摄像机作为辅助传感器组成,因此必须采用融合算法来获得最准确可靠的障碍物跟踪估计。本文描述了所开发的跟踪算法的不同模式和可实现的相关性能。跟踪采用的数据融合技术是卡尔曼滤波。特别在典型的碰撞场景中比较了三种不同的算法,即直角坐标下的常规滤波、球坐标下的常规滤波和直角坐标下的扩展滤波。虽然这三种算法都表现出令人满意的性能,但在直角坐标下的扩展滤波结果最适合这种机载应用
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Airborne Multisensor Tracking for Autonomous Collision Avoidance
This paper presents the tracking algorithms developed for a multisensor anti-collision system for unmanned aerial vehicles. This system will be developed by the Italian Aerospace Research Center (CIRA) within a research project named TECVOL, funded in the frame of the National Aerospace Research Program (PRO.R.A.) on UAV. The hardware setup is composed by a pulsed radar, two infrared cameras, and two visible cameras used as aiding sensors, thus the adoption of a fusion algorithm was mandatory to obtain the most accurate and reliable tracking estimate of obstacles. The paper describes the different modes and the relevant attainable performances of the developed tracking algorithm. The adopted data fusion technique for tracking is the Kalman filter. In particular, three different algorithms are compared in a typical collision scenario, namely conventional filter in rectangular coordinates, conventional filter in spherical coordinates, and extended filter in rectangular coordinates. Though all the three algorithms exhibited satisfying performances, the extended filter in rectangular coordinates resulted the most adequate for this airborne application
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信